9. The Liouville Lambda (A) function is a number theoretic function- similar to T. g. 6 et al. It is defi ned by if n = 1 X(12) %3D itk2t...+k, if n > 1 = pf'p ... pr e N. where n = kiaka Prove that if n is a perfect square, then X(n) = 1.

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question

Question 9

**Educational Content on Number Theory**

9. **The Liouville Lambda (λ) Function**

The Liouville Lambda function is a number theoretic function defined similarly to functions such as τ, σ, and φ. It is defined as:

\[ 
\lambda(n) = 
\begin{cases} 
1 & \text{if } n = 1 \\ 
(-1)^{k_1 + k_2 + \ldots + k_r} & \text{if } n > 1 
\end{cases} 
\]

where \( n = p_1^{k_1} p_2^{k_2} \ldots p_r^{k_r} \in \mathbb{N} \).

*Prove that if \( n \) is a perfect square, then \( \lambda(n) = 1 \).*

10. **Primitive Roots**

Let \( r \) be a primitive root of some \( n \geq 3 \). Prove that:

\[ r^{\frac{\phi(n)}{2}} \equiv -1 \pmod{n} \]

11. **Integer Function Calculations**

Find \( \tau(n) \), \( \sigma(n) \), \( \lambda(n) \), \( \mu(n) \), \( \omega(n) \), and \( \phi(n) \) for the following integers:

- 2250
- 199
- 286936650
- 22!

*(Note: \(\mu(n)\) is defined on page 112. \(\omega(n)\) is defined on page 111.)*

12. **Divisors of a Function**

Let \( p = 17 \) and \( d \) be a divisor of \( \phi(p) \). Determine \( \psi(d) \) for each \( d \). List every element having order \( d \), for all divisors \( d \), of \( \phi(p) \).

13. **Primitive Roots Calculation**

Calculate all the primitive roots of 41 and 26.

14. **Nonexistence of Primitive Roots**

Demonstrate that 21 has no primitive root.

15. **Indices and Congruences**

Let \( r \) be a primitive root of \( n \). If \( \gcd(a, n) = 1 \), then the smallest positive integer \( k \)
Transcribed Image Text:**Educational Content on Number Theory** 9. **The Liouville Lambda (λ) Function** The Liouville Lambda function is a number theoretic function defined similarly to functions such as τ, σ, and φ. It is defined as: \[ \lambda(n) = \begin{cases} 1 & \text{if } n = 1 \\ (-1)^{k_1 + k_2 + \ldots + k_r} & \text{if } n > 1 \end{cases} \] where \( n = p_1^{k_1} p_2^{k_2} \ldots p_r^{k_r} \in \mathbb{N} \). *Prove that if \( n \) is a perfect square, then \( \lambda(n) = 1 \).* 10. **Primitive Roots** Let \( r \) be a primitive root of some \( n \geq 3 \). Prove that: \[ r^{\frac{\phi(n)}{2}} \equiv -1 \pmod{n} \] 11. **Integer Function Calculations** Find \( \tau(n) \), \( \sigma(n) \), \( \lambda(n) \), \( \mu(n) \), \( \omega(n) \), and \( \phi(n) \) for the following integers: - 2250 - 199 - 286936650 - 22! *(Note: \(\mu(n)\) is defined on page 112. \(\omega(n)\) is defined on page 111.)* 12. **Divisors of a Function** Let \( p = 17 \) and \( d \) be a divisor of \( \phi(p) \). Determine \( \psi(d) \) for each \( d \). List every element having order \( d \), for all divisors \( d \), of \( \phi(p) \). 13. **Primitive Roots Calculation** Calculate all the primitive roots of 41 and 26. 14. **Nonexistence of Primitive Roots** Demonstrate that 21 has no primitive root. 15. **Indices and Congruences** Let \( r \) be a primitive root of \( n \). If \( \gcd(a, n) = 1 \), then the smallest positive integer \( k \)
Expert Solution
steps

Step by step

Solved in 2 steps

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,