9. Solve the IVPs. Sketch the solution. Describe the long term behavior. (a) y' + 3y = 2H(t− 3), y(0)=2 (b) y' + 3y = 28(t− 3), (c) y' + 3y = sin(at), y(0) = 2 y(0) = 0.

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question

Answer 

9. Solve the IVPs. Sketch the solution. Describe the long term behavior.
(a) y' + 3y = 2(t-3),
y(0) = 2
(b) y' + 3y = 28(t-3),
y(0)=2
(c) y' + 3y = sin(at),
(d) y" +9y=sin(t),
y(0) = 0.
y(0) = 0, y'(0) = 0
Transcribed Image Text:9. Solve the IVPs. Sketch the solution. Describe the long term behavior. (a) y' + 3y = 2(t-3), y(0) = 2 (b) y' + 3y = 28(t-3), y(0)=2 (c) y' + 3y = sin(at), (d) y" +9y=sin(t), y(0) = 0. y(0) = 0, y'(0) = 0
9. (a) y(t) = 2e-³t+ (1 − e9–³t) H (t − 3). y → 2/3 as t → ∞.
(b) y(t) = 2e-3t+2e⁹-3t H(t− 3). y → 0 as t→∞.
1
cos(πt + p), p=tan ¹(3/π).
(c) y(t)
=
ㅠ
9+7²
-3t
√9+ π²
y(t) tends toward -√² cos(xt + 6).
-
(d) y(t) = (sin(3t) – sin(t))
Transcribed Image Text:9. (a) y(t) = 2e-³t+ (1 − e9–³t) H (t − 3). y → 2/3 as t → ∞. (b) y(t) = 2e-3t+2e⁹-3t H(t− 3). y → 0 as t→∞. 1 cos(πt + p), p=tan ¹(3/π). (c) y(t) = ㅠ 9+7² -3t √9+ π² y(t) tends toward -√² cos(xt + 6). - (d) y(t) = (sin(3t) – sin(t))
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 5 steps with 4 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,