9. Let be a bounded open subset of C, and 4: Prove that if there exists a point zo E such that 2 a holomorphic function. 4(zo) = 20 and 4' (zo) = 1 then is linear. [Hint: Why can one assume that zo = 0? Write y(z)=z+anz" +O(z+¹) near 0, and prove that if k = o...o (where y appears k times), then k(z) = z+kanzn +0(z+¹). Apply the Cauchy inequalities and let k → ∞ to conclude the proof. Here we use the standard O notation, where f(z) = O(g(z)) as z → 0 means that f(z)| ≤ C|g(z)| for some constant C as [2] → 0.]
9. Let be a bounded open subset of C, and 4: Prove that if there exists a point zo E such that 2 a holomorphic function. 4(zo) = 20 and 4' (zo) = 1 then is linear. [Hint: Why can one assume that zo = 0? Write y(z)=z+anz" +O(z+¹) near 0, and prove that if k = o...o (where y appears k times), then k(z) = z+kanzn +0(z+¹). Apply the Cauchy inequalities and let k → ∞ to conclude the proof. Here we use the standard O notation, where f(z) = O(g(z)) as z → 0 means that f(z)| ≤ C|g(z)| for some constant C as [2] → 0.]
Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Related questions
Question
100%
I'm not sure how to do this problem using the hints. The only thing I understand is why we can assume z0=0. Other than that, I'm stuck.
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 3 steps with 3 images
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,