9. Laplace Transforms (a) Use the integral definition to find L{cosh(t). e}. Use the nspire to integrate (b) Use the shortcut formulas to find L{8tª −5t² −2+3 sin(5t)}

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
# Laplace Transforms

## Exercises:

### 9. Laplace Transforms

#### (a) Task:
Use the integral definition to find the Laplace Transform of the function \( \mathcal{L} \{ \cosh(t) \cdot e^{-t} \} \).  
Hint: Use the nspire calculator to integrate.

#### (b) Task:
Utilize the shortcut formulas to find the Laplace Transform of the function \( \mathcal{L} \{ 8t^4 - 5t^2 - 2 + 3\sin(5t) \} \).

**Note:** There are no graphs or diagrams accompanying these tasks.
Transcribed Image Text:# Laplace Transforms ## Exercises: ### 9. Laplace Transforms #### (a) Task: Use the integral definition to find the Laplace Transform of the function \( \mathcal{L} \{ \cosh(t) \cdot e^{-t} \} \). Hint: Use the nspire calculator to integrate. #### (b) Task: Utilize the shortcut formulas to find the Laplace Transform of the function \( \mathcal{L} \{ 8t^4 - 5t^2 - 2 + 3\sin(5t) \} \). **Note:** There are no graphs or diagrams accompanying these tasks.
Expert Solution
steps

Step by step

Solved in 4 steps with 2 images

Blurred answer
Similar questions
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,