9. Find the limit. Ukse ľ Hompital's Bule if approprate. It there its a more elementang method, comsider it weing • break, it apart, to check * form is o∞-0, needo to be rewritten into form % or % 9x it I' Hospital's Bule con be used lim and 00 Incx) Incx). 9(0) -9+9 9 1x nx. 9x Clma)-9 (x-1) Inx (x-1) 9x (lnx) -9x +9 = lim Inx (x-1) 961) (In (I)-9 1)+9 = lim rewrite %3D Incx) (x-1) In()(1-1) to) (0) (x-1) Inx メ+」 o indeterminate I'Hoop. again! a 9x (Inx)-9 x-1) Inx(x-1) Inx (x-1) + (x-1) n nx (1x (G) + hox (9)-1 + (x-1)) Inx + (x- 1)(*) 8+ Inx9-9-x+| Inx + 1-/x Inx9-x+ ] x+1 Inx+ 1-/x xx In(I) +!=% lim- = lim = lim = lim In(1)9-1 +1 x+| indeterminate 00

Calculus: Early Transcendentals
8th Edition
ISBN:9781285741550
Author:James Stewart
Publisher:James Stewart
Chapter1: Functions And Models
Section: Chapter Questions
Problem 1RCC: (a) What is a function? What are its domain and range? (b) What is the graph of a function? (c) How...
icon
Related questions
Question
Please help, I’ve tried and retried. And I just can’t get the answer. The answer is 9/2 but I’m lost. Legit please, explain to me like I’m a baby ??????
**Title: Calculating Limits Using L'Hôpital's Rule**

**Objective:** Understand the process of finding limits by employing L'Hôpital's Rule when forms are indeterminate.

**Problem Statement:**
Find the limit:
\[ \lim_{x \to 1} \left( \frac{9x}{x-1} - \frac{9}{\ln x} \right) \]

### Steps and Explanation:

1. **Initial Expression Analysis:**
   \[
   \lim_{x \to 1} \left( \frac{9x}{x-1} - \frac{9}{\ln x} \right)
   \]
   - Break into separate limits to check if L'Hôpital's Rule is applicable:
   \[
   \lim_{x \to 1} \frac{9x}{x-1} = \infty \quad \text{and} \quad \lim_{x \to 1} \frac{9}{\ln x} = \infty
   \]
   - Form is \(\infty - \infty\). Needs rewriting into \(\frac{0}{0}\) or \(\frac{\infty}{\infty}\) to apply L'Hôpital's Rule.

2. **Rewriting for L'Hôpital's Rule:**
   - Rewriting:
   \[
   \lim_{x \to 1} \frac{9x \ln x - 9(x-1)}{\ln x (x-1)}
   \]
   - Simplify numerator:
   \[
   = \lim_{x \to 1} \frac{9x \ln x - 9x + 9}{\ln x (x-1)}
   \]
   - Verify form:
   \[
   = \frac{0}{0} \quad \text{(indeterminate form, apply L'Hôpital)}
   \]

3. **Applying L'Hôpital's Rule:**
   - Differentiate numerator and denominator:
   \[
   \lim_{x \to 1} \frac{\frac{d}{dx}(9x \ln x - 9x + 9)}{\frac{d}{dx}(\ln x (x-1))}
   \]
   - Differentiate numerator:
   \[
   9 \frac{d}{dx}(x \ln x) + \
Transcribed Image Text:**Title: Calculating Limits Using L'Hôpital's Rule** **Objective:** Understand the process of finding limits by employing L'Hôpital's Rule when forms are indeterminate. **Problem Statement:** Find the limit: \[ \lim_{x \to 1} \left( \frac{9x}{x-1} - \frac{9}{\ln x} \right) \] ### Steps and Explanation: 1. **Initial Expression Analysis:** \[ \lim_{x \to 1} \left( \frac{9x}{x-1} - \frac{9}{\ln x} \right) \] - Break into separate limits to check if L'Hôpital's Rule is applicable: \[ \lim_{x \to 1} \frac{9x}{x-1} = \infty \quad \text{and} \quad \lim_{x \to 1} \frac{9}{\ln x} = \infty \] - Form is \(\infty - \infty\). Needs rewriting into \(\frac{0}{0}\) or \(\frac{\infty}{\infty}\) to apply L'Hôpital's Rule. 2. **Rewriting for L'Hôpital's Rule:** - Rewriting: \[ \lim_{x \to 1} \frac{9x \ln x - 9(x-1)}{\ln x (x-1)} \] - Simplify numerator: \[ = \lim_{x \to 1} \frac{9x \ln x - 9x + 9}{\ln x (x-1)} \] - Verify form: \[ = \frac{0}{0} \quad \text{(indeterminate form, apply L'Hôpital)} \] 3. **Applying L'Hôpital's Rule:** - Differentiate numerator and denominator: \[ \lim_{x \to 1} \frac{\frac{d}{dx}(9x \ln x - 9x + 9)}{\frac{d}{dx}(\ln x (x-1))} \] - Differentiate numerator: \[ 9 \frac{d}{dx}(x \ln x) + \
Expert Solution
steps

Step by step

Solved in 2 steps

Blurred answer
Knowledge Booster
Inequality
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, calculus and related others by exploring similar questions and additional content below.
Recommended textbooks for you
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning
Thomas' Calculus (14th Edition)
Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON
Calculus: Early Transcendentals (3rd Edition)
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781319050740
Author:
Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:
W. H. Freeman
Precalculus
Precalculus
Calculus
ISBN:
9780135189405
Author:
Michael Sullivan
Publisher:
PEARSON
Calculus: Early Transcendental Functions
Calculus: Early Transcendental Functions
Calculus
ISBN:
9781337552516
Author:
Ron Larson, Bruce H. Edwards
Publisher:
Cengage Learning