9. Determine the number of terms needed to approximate the sum of the convergent serie. an error of less than 0.001. a. n=0 00 b. Σ n=1 (-1)" 1 2"n! √e = -1)"+1 n² C. (-1)"+1 n=1 n4" = In 5|4

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question

I need help with number 9 a to c. 

### Series Approximations and Convergence Tests

#### 9. Approximating Series with an Error Threshold

**Question 9:** Determine the number of terms needed to approximate the sum of the convergent series with an error of less than 0.001.

- **(a)** \( \sum_{n=0}^{\infty} \frac{(-1)^n 2^n}{n!} = \frac{1}{\sqrt{e}} \)
- **(b)** \( \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n^2} \)
- **(c)** \( \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n 4^n} = \ln \left( \frac{5}{4} \right) \)

#### 10. Convergence and Divergence Testing

**Question 10:** Use the root or ratio tests to determine the convergence or divergence of the series. If the test is inconclusive, use another test. State which test(s) you use.

- **(a)** \( \sum_{n=1}^{\infty} \left( \frac{3}{4} \right)^n \)
- **(b)** \( \sum_{n=0}^{\infty} \frac{3^n}{(n+1)^n} \)
- **(c)** \( \sum_{n=1}^{\infty} \frac{1}{\sqrt{n}} \)
- **(d)** \( \sum_{n=1}^{\infty} \frac{1}{4^n} \)
- **(e)** \( \sum_{k=1}^{\infty} k \left( \frac{2}{3} \right)^k \)
- **(f)** \( \sum_{n=1}^{\infty} \frac{\cos \frac{\pi n}{3}}{n!} \)
- **(g)** \( \sum_{n=0}^{\infty} \frac{(2n)!}{(n!)^2} \)
- **(h)** \( \sum_{n=1}^{\infty} \frac{2^n n!}{5 \cdot 8 \cdot 11
Transcribed Image Text:### Series Approximations and Convergence Tests #### 9. Approximating Series with an Error Threshold **Question 9:** Determine the number of terms needed to approximate the sum of the convergent series with an error of less than 0.001. - **(a)** \( \sum_{n=0}^{\infty} \frac{(-1)^n 2^n}{n!} = \frac{1}{\sqrt{e}} \) - **(b)** \( \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n^2} \) - **(c)** \( \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n 4^n} = \ln \left( \frac{5}{4} \right) \) #### 10. Convergence and Divergence Testing **Question 10:** Use the root or ratio tests to determine the convergence or divergence of the series. If the test is inconclusive, use another test. State which test(s) you use. - **(a)** \( \sum_{n=1}^{\infty} \left( \frac{3}{4} \right)^n \) - **(b)** \( \sum_{n=0}^{\infty} \frac{3^n}{(n+1)^n} \) - **(c)** \( \sum_{n=1}^{\infty} \frac{1}{\sqrt{n}} \) - **(d)** \( \sum_{n=1}^{\infty} \frac{1}{4^n} \) - **(e)** \( \sum_{k=1}^{\infty} k \left( \frac{2}{3} \right)^k \) - **(f)** \( \sum_{n=1}^{\infty} \frac{\cos \frac{\pi n}{3}}{n!} \) - **(g)** \( \sum_{n=0}^{\infty} \frac{(2n)!}{(n!)^2} \) - **(h)** \( \sum_{n=1}^{\infty} \frac{2^n n!}{5 \cdot 8 \cdot 11
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 3 steps

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,