9. An important tool in archeological research is radiocarbon dating, developed by the American chemist Willard F. Libby. This is a means of determining the age of certain wood and plant remains, and hence of animal or human bones or artifacts found buried at the same levels. Radiocarbon dating is based on the fact that some wood or plant remains contain residual amounts of carbon-14, a radioactive isotope of carbon. This isotope is accumulated during the lifetime of the plant and begins to decay at its death. Since the half-life of carbon-14 is long (approximately 5730 years),4 measurable amounts of carbon-14 remain after many thousands of years. If even a tiny fraction of the original amount of carbon-14 is still present, then by appropriate laboratory measurements the proportion of the original amount of carbon-14 that remains can be accurately determined. In other words, if Q(t) is the amount of carbon-14 at time t and Qo is the original amount, then the ratio Q(t)/Qo can be determined, as long as this quantity is not too small. Present measurement techniques permit the use of this method for time periods of 50,000 years or more. a. Assuming that satisfies the differential equation Q' = -rQ, determine the decay constant r for carbon-14. b. Find an expression for Q(t) at any time t, if Q(0) 20. c. Suppose that certain remains are discovered in which the current residual amount of carbon-14 is 20% of the original amount. Determine the age of these remains. =
9. An important tool in archeological research is radiocarbon dating, developed by the American chemist Willard F. Libby. This is a means of determining the age of certain wood and plant remains, and hence of animal or human bones or artifacts found buried at the same levels. Radiocarbon dating is based on the fact that some wood or plant remains contain residual amounts of carbon-14, a radioactive isotope of carbon. This isotope is accumulated during the lifetime of the plant and begins to decay at its death. Since the half-life of carbon-14 is long (approximately 5730 years),4 measurable amounts of carbon-14 remain after many thousands of years. If even a tiny fraction of the original amount of carbon-14 is still present, then by appropriate laboratory measurements the proportion of the original amount of carbon-14 that remains can be accurately determined. In other words, if Q(t) is the amount of carbon-14 at time t and Qo is the original amount, then the ratio Q(t)/Qo can be determined, as long as this quantity is not too small. Present measurement techniques permit the use of this method for time periods of 50,000 years or more. a. Assuming that satisfies the differential equation Q' = -rQ, determine the decay constant r for carbon-14. b. Find an expression for Q(t) at any time t, if Q(0) 20. c. Suppose that certain remains are discovered in which the current residual amount of carbon-14 is 20% of the original amount. Determine the age of these remains. =
Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Related questions
Question
9
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 4 steps
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,