9. A rectangular gate that is 2 m wide is located in the vertical wall of a tank containing water as shown below. It is desired to have the gate open automatically when the depth of water above the top of the gate reaches 10 m. (a) At what distance, d, should the frictionless horizontal shaft be located? (b) What is the magnitude of the force on the gate when it opens? Take y = 9.80 kN/m³ %3D

Elements Of Electromagnetics
7th Edition
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Sadiku, Matthew N. O.
ChapterMA: Math Assessment
Section: Chapter Questions
Problem 1.1MA
icon
Related questions
Topic Video
Question
Water
10 m
4 m
Transcribed Image Text:Water 10 m 4 m
9. A rectangular gate that is 2 m wide is located in the vertical wall of a tank containing
water as shown below. It is desired to have the gate open automatically when the depth
of water above the top of the gate reaches 10 m. (a) At what distance, d, should the
frictionless horizontal shaft be located? (b) What is the magnitude of the force on the
gate when it opens? Take y = 9.80 kN/m³
Transcribed Image Text:9. A rectangular gate that is 2 m wide is located in the vertical wall of a tank containing water as shown below. It is desired to have the gate open automatically when the depth of water above the top of the gate reaches 10 m. (a) At what distance, d, should the frictionless horizontal shaft be located? (b) What is the magnitude of the force on the gate when it opens? Take y = 9.80 kN/m³
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Knowledge Booster
Fluid Statics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
Elements Of Electromagnetics
Elements Of Electromagnetics
Mechanical Engineering
ISBN:
9780190698614
Author:
Sadiku, Matthew N. O.
Publisher:
Oxford University Press
Mechanics of Materials (10th Edition)
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:
9780134319650
Author:
Russell C. Hibbeler
Publisher:
PEARSON
Thermodynamics: An Engineering Approach
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:
9781259822674
Author:
Yunus A. Cengel Dr., Michael A. Boles
Publisher:
McGraw-Hill Education
Control Systems Engineering
Control Systems Engineering
Mechanical Engineering
ISBN:
9781118170519
Author:
Norman S. Nise
Publisher:
WILEY
Mechanics of Materials (MindTap Course List)
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:
9781337093347
Author:
Barry J. Goodno, James M. Gere
Publisher:
Cengage Learning
Engineering Mechanics: Statics
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:
9781118807330
Author:
James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:
WILEY