9. 10. |C/G|| y" + 3y' + 2y = 1 + d(t − 1), y" + 2y' + y = et +28(t− 2), y(0) = −1, y'(0) = 2 y(0)=1, y′(0) = −1

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question

Numbers 10 and 15

 

In Exercises 1-20 solve the initial value problem. Where indicated by C/G, graph the solution.
1.
y" + 3y' + 2y = 6e²t + 28(t − 1), y(0) = 2, y'(0) = −6
-t
2.
C/Gy" + y − 2y = −10e¯
-
+58(t-1),
y(0) = 7, y'(0)
3.
y" - 4y = 2e-t +58(t-1), y(0) = −1, y'(0) = 2
+
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
|C/G|y" + y = sin 3t+28(t — π/2),
y" + 4y = 4 + 8(t−3π),
y(0) = 0,
y" - y = 8+28(t — 2),
y(0) = -1,
y"+y' = et + 38(t — 6),
y(0) = -1,
y'(0) = 4
y" + 4y = 8e²t +8(t = π/2), y(0) = 8,_y'(0) = 0
y(0) = 1,
y'(0) = 1
y'(0)=1
y'(0) =
= −1,
C/Gy" + 3y' + 2y = 1 + 8(t − 1), y(0) = 1, y'(0) = −1
y" + 2y + y = et + 28 (t− 2), y(0)
y'(0) = 2
= −1
y(0) = 0,
y(0)
=
C/Gy" + 4y = sint + 8(t− π/2),
y' (0) = 2
y" + 2y + 2y = 8(t – π) — 38(t – 2π),
= -1, y'(0) = 2
y(0) = 1,
y'(0) =
y" + 4y' + 13y = 8(t − π/6) + 28(t — π/3),
2y" − 3y′ – 2y = 1 + d(t − 2), y(0) = -1,
4y" — 4y' + 5y = 4 sint - 4 cost + 8(t − π/2) — 8(t = π), y(0) = 1, y′(0) = 1
y' (0) = 2
= 2
Transcribed Image Text:In Exercises 1-20 solve the initial value problem. Where indicated by C/G, graph the solution. 1. y" + 3y' + 2y = 6e²t + 28(t − 1), y(0) = 2, y'(0) = −6 -t 2. C/Gy" + y − 2y = −10e¯ - +58(t-1), y(0) = 7, y'(0) 3. y" - 4y = 2e-t +58(t-1), y(0) = −1, y'(0) = 2 + 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. |C/G|y" + y = sin 3t+28(t — π/2), y" + 4y = 4 + 8(t−3π), y(0) = 0, y" - y = 8+28(t — 2), y(0) = -1, y"+y' = et + 38(t — 6), y(0) = -1, y'(0) = 4 y" + 4y = 8e²t +8(t = π/2), y(0) = 8,_y'(0) = 0 y(0) = 1, y'(0) = 1 y'(0)=1 y'(0) = = −1, C/Gy" + 3y' + 2y = 1 + 8(t − 1), y(0) = 1, y'(0) = −1 y" + 2y + y = et + 28 (t− 2), y(0) y'(0) = 2 = −1 y(0) = 0, y(0) = C/Gy" + 4y = sint + 8(t− π/2), y' (0) = 2 y" + 2y + 2y = 8(t – π) — 38(t – 2π), = -1, y'(0) = 2 y(0) = 1, y'(0) = y" + 4y' + 13y = 8(t − π/6) + 28(t — π/3), 2y" − 3y′ – 2y = 1 + d(t − 2), y(0) = -1, 4y" — 4y' + 5y = 4 sint - 4 cost + 8(t − π/2) — 8(t = π), y(0) = 1, y′(0) = 1 y' (0) = 2 = 2
Expert Solution
steps

Step by step

Solved in 3 steps with 3 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,