9₁¹ = = Σ m=3,5,7.... (2) sin() a 2 ( 2² h ²2 (1-m²)) 2ma² 2 4maa 0 =√√√(4) (3 + a ħ² (sin (3x) + 4maa =√(4m) = Pmº 0 1-25 95⁰ + 1-49 97⁰ + ...) ma =√√(a) (sin (2x) - h² Therefore, the first three terms are 4 sin (5x) + sin(x) + ....) sin(x)+sin(x) + ...) ma √(a) (sin (2x) - sin (²x) + ¹sin (25x) + ....). 2

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question

Could you explain how we expanded the sum ? Why m got outside of the sum as a constant?

=
a
-
=
4maa
φι' = Σ
π² ħ²
m=3,5,7....
4maa
π² ħ²
-) (sin (3x) +
(2) sin
a
ma
=√(²) (sin (²x) -
π² ħ²
2ma²
0
√√² (1993° +1=2595° +1-4997° + ....)
a
(1
mл
2
- m²
Pmº
4 sin (x) +
sin(x) +
sin(x) + ...)
ma
Therefore, the first three terms are √√(a) (sin (2x)-sin (2x) + ¹sin (25x) + ...).
=)
sin(x) + ....)
Transcribed Image Text:= a - = 4maa φι' = Σ π² ħ² m=3,5,7.... 4maa π² ħ² -) (sin (3x) + (2) sin a ma =√(²) (sin (²x) - π² ħ² 2ma² 0 √√² (1993° +1=2595° +1-4997° + ....) a (1 mл 2 - m² Pmº 4 sin (x) + sin(x) + sin(x) + ...) ma Therefore, the first three terms are √√(a) (sin (2x)-sin (2x) + ¹sin (25x) + ...). =) sin(x) + ....)
Expert Solution
Step 1

Consider the provided expression,

φ11=m=3,5,7...2αasinmπ2π2h22ma21-m2φm0

In the given expanded form outside m is not a constant value, it also be a variable.

So, substitute the every value of m=3,5,7,... in expansion of series.

 

 

steps

Step by step

Solved in 2 steps

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,