9) For the 2p, orbital, what is the most probable point (r, 8, d) where an e- will be found. R₁, Y₁ = fi ce -$12 3 2,1 1,0 √24 a. pe 3/2 "pe²³ ) ² = 0 d Z dx √24 a. pe 4T COSO 2 (COSO )² = 0
9) For the 2p, orbital, what is the most probable point (r, 8, d) where an e- will be found. R₁, Y₁ = fi ce -$12 3 2,1 1,0 √24 a. pe 3/2 "pe²³ ) ² = 0 d Z dx √24 a. pe 4T COSO 2 (COSO )² = 0
Chemistry
10th Edition
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Chapter1: Chemical Foundations
Section: Chapter Questions
Problem 1RQ: Define and explain the differences between the following terms. a. law and theory b. theory and...
Related questions
Question
![**Question 9: For the 2p\(_z\) orbital, what is the most probable point \((r, \theta, \phi)\) where an electron will be found?**
The expression for the radial and angular parts is:
\[
R_{2,1}Y_{1,0} = \left(\frac{1}{\sqrt{24}}\right)\left(\frac{z}{a_0}\right)^{3/2} pe^{-r/2}\sqrt{\frac{3}{4\pi}} \cos\theta
\]
To find the most probable point, the first derivative of the probability density with respect to the position \(x\) is set to zero:
\[
\frac{d}{dx} \left(\sqrt{\frac{3}{4\pi}} \cos\theta \right)^2 = 0
\]
And:
\[
\frac{d}{dx} \left(\frac{1}{\sqrt{24}}\left(\frac{z}{a_0}\right)^{3/2} pe^{-r/2} \right)^2 = 0
\]
This involves determining where the derivative of the probability density function is zero, indicating points of maximum probability.](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F1fed7a52-65d8-44f4-988f-6c762cda0c09%2F7c937233-99ad-402e-aa8f-d8c463d55a3b%2Fd0rzhfp_processed.jpeg&w=3840&q=75)
Transcribed Image Text:**Question 9: For the 2p\(_z\) orbital, what is the most probable point \((r, \theta, \phi)\) where an electron will be found?**
The expression for the radial and angular parts is:
\[
R_{2,1}Y_{1,0} = \left(\frac{1}{\sqrt{24}}\right)\left(\frac{z}{a_0}\right)^{3/2} pe^{-r/2}\sqrt{\frac{3}{4\pi}} \cos\theta
\]
To find the most probable point, the first derivative of the probability density with respect to the position \(x\) is set to zero:
\[
\frac{d}{dx} \left(\sqrt{\frac{3}{4\pi}} \cos\theta \right)^2 = 0
\]
And:
\[
\frac{d}{dx} \left(\frac{1}{\sqrt{24}}\left(\frac{z}{a_0}\right)^{3/2} pe^{-r/2} \right)^2 = 0
\]
This involves determining where the derivative of the probability density function is zero, indicating points of maximum probability.
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
Step 1
Step by step
Solved in 2 steps with 2 images
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.Recommended textbooks for you
![Chemistry](https://www.bartleby.com/isbn_cover_images/9781305957404/9781305957404_smallCoverImage.gif)
Chemistry
Chemistry
ISBN:
9781305957404
Author:
Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:
Cengage Learning
![Chemistry](https://www.bartleby.com/isbn_cover_images/9781259911156/9781259911156_smallCoverImage.gif)
Chemistry
Chemistry
ISBN:
9781259911156
Author:
Raymond Chang Dr., Jason Overby Professor
Publisher:
McGraw-Hill Education
![Principles of Instrumental Analysis](https://www.bartleby.com/isbn_cover_images/9781305577213/9781305577213_smallCoverImage.gif)
Principles of Instrumental Analysis
Chemistry
ISBN:
9781305577213
Author:
Douglas A. Skoog, F. James Holler, Stanley R. Crouch
Publisher:
Cengage Learning
![Chemistry](https://www.bartleby.com/isbn_cover_images/9781305957404/9781305957404_smallCoverImage.gif)
Chemistry
Chemistry
ISBN:
9781305957404
Author:
Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:
Cengage Learning
![Chemistry](https://www.bartleby.com/isbn_cover_images/9781259911156/9781259911156_smallCoverImage.gif)
Chemistry
Chemistry
ISBN:
9781259911156
Author:
Raymond Chang Dr., Jason Overby Professor
Publisher:
McGraw-Hill Education
![Principles of Instrumental Analysis](https://www.bartleby.com/isbn_cover_images/9781305577213/9781305577213_smallCoverImage.gif)
Principles of Instrumental Analysis
Chemistry
ISBN:
9781305577213
Author:
Douglas A. Skoog, F. James Holler, Stanley R. Crouch
Publisher:
Cengage Learning
![Organic Chemistry](https://www.bartleby.com/isbn_cover_images/9780078021558/9780078021558_smallCoverImage.gif)
Organic Chemistry
Chemistry
ISBN:
9780078021558
Author:
Janice Gorzynski Smith Dr.
Publisher:
McGraw-Hill Education
![Chemistry: Principles and Reactions](https://www.bartleby.com/isbn_cover_images/9781305079373/9781305079373_smallCoverImage.gif)
Chemistry: Principles and Reactions
Chemistry
ISBN:
9781305079373
Author:
William L. Masterton, Cecile N. Hurley
Publisher:
Cengage Learning
![Elementary Principles of Chemical Processes, Bind…](https://www.bartleby.com/isbn_cover_images/9781118431221/9781118431221_smallCoverImage.gif)
Elementary Principles of Chemical Processes, Bind…
Chemistry
ISBN:
9781118431221
Author:
Richard M. Felder, Ronald W. Rousseau, Lisa G. Bullard
Publisher:
WILEY