9) Find the transformation from u, v space to x, y, z space that takes the triangle U = [(0,0), (1, to the triangle Т%3 [(1,0, —2), (-1,2,0), (1, 1, 2)] Consider T (U, V) (a^u + bjv + cq, azu + b2v + C2, a3u b3vc3) Obtain the transformation from u, v to x, y, z T (0,0) = (a1(0) + b(0) C1, a2(0) + b2(0) c2, a3(0) + b3(0) Т (0,0) %3D (с1. С2, Сз) C3) Т (0,0) 3D (1,0, —2) C1 1, c2 0, c3 = -2 c1, a2(1) + b2(0) + C2, a3(1) + b3(0) C3) T (1,0) = (a1(1) b,(0) T (1,0) = (a1 +c1, a2 C2, a3 +C3) T (1,0) -1,2,0) a, c1-1, a2 + C2 3D 2, аз + Сз — 0 a1 -2, a2 = 2, a3 = 2 T (0,1) = (a1(0) + b(1)C1,a2(0) + b2(1) c2, a3(0) + b3(1) C3) (b1ci, b2 + C2, b3 +C3) T (0,1) T (0,1) (1,1,2) b1 +c = 1, b2+c2= 1, b3C3 2 b1 0, b2 1, b3 = 4 : T(и, v) 3D (-2и + 1,2и + v, 2u + 4v — 2) .. 10) Using the transformation of Exercise 9, find the pullback of (у — 1) dydz + (у + z)dzdx- dxdy _

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Topic Video
Question

Hi , I need assistance with calc 4 question you told me to post under advanced math instead. It's number 10 dealing w/ pullbacks referenceing number 9 which I have attached.

 

Thanks

9) Find the transformation from u, v space to x, y, z space that takes the triangle U = [(0,0), (1,
to the triangle
Т%3 [(1,0, —2), (-1,2,0), (1, 1, 2)]
Consider T (U, V)
(a^u + bjv + cq, azu + b2v + C2, a3u b3vc3)
Obtain the transformation from u, v to x, y, z
T (0,0) = (a1(0) + b(0) C1, a2(0) + b2(0) c2, a3(0) + b3(0)
Т (0,0) %3D (с1. С2, Сз)
C3)
Т (0,0) 3D (1,0, —2)
C1 1, c2 0, c3 = -2
c1, a2(1) + b2(0) + C2, a3(1) + b3(0) C3)
T (1,0) = (a1(1)
b,(0)
T (1,0) = (a1 +c1, a2 C2, a3 +C3)
T (1,0) -1,2,0)
a, c1-1, a2 + C2
3D 2, аз + Сз — 0
a1 -2, a2 = 2, a3 = 2
T (0,1) = (a1(0) + b(1)C1,a2(0) + b2(1) c2, a3(0) + b3(1)
C3)
(b1ci, b2 + C2, b3 +C3)
T (0,1)
T (0,1) (1,1,2)
b1 +c = 1, b2+c2= 1, b3C3 2
b1 0, b2 1, b3 = 4
: T(и, v) 3D (-2и + 1,2и + v, 2u + 4v — 2)
..
Transcribed Image Text:9) Find the transformation from u, v space to x, y, z space that takes the triangle U = [(0,0), (1, to the triangle Т%3 [(1,0, —2), (-1,2,0), (1, 1, 2)] Consider T (U, V) (a^u + bjv + cq, azu + b2v + C2, a3u b3vc3) Obtain the transformation from u, v to x, y, z T (0,0) = (a1(0) + b(0) C1, a2(0) + b2(0) c2, a3(0) + b3(0) Т (0,0) %3D (с1. С2, Сз) C3) Т (0,0) 3D (1,0, —2) C1 1, c2 0, c3 = -2 c1, a2(1) + b2(0) + C2, a3(1) + b3(0) C3) T (1,0) = (a1(1) b,(0) T (1,0) = (a1 +c1, a2 C2, a3 +C3) T (1,0) -1,2,0) a, c1-1, a2 + C2 3D 2, аз + Сз — 0 a1 -2, a2 = 2, a3 = 2 T (0,1) = (a1(0) + b(1)C1,a2(0) + b2(1) c2, a3(0) + b3(1) C3) (b1ci, b2 + C2, b3 +C3) T (0,1) T (0,1) (1,1,2) b1 +c = 1, b2+c2= 1, b3C3 2 b1 0, b2 1, b3 = 4 : T(и, v) 3D (-2и + 1,2и + v, 2u + 4v — 2) ..
10) Using the transformation of Exercise 9, find the pullback of
(у — 1) dydz + (у + z)dzdx-
dxdy
_
Transcribed Image Text:10) Using the transformation of Exercise 9, find the pullback of (у — 1) dydz + (у + z)dzdx- dxdy _
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 4 steps with 4 images

Blurred answer
Knowledge Booster
Propositional Calculus
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, advanced-math and related others by exploring similar questions and additional content below.
Similar questions
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,