/9 – 2° dz Integrate: z4

Calculus: Early Transcendentals
8th Edition
ISBN:9781285741550
Author:James Stewart
Publisher:James Stewart
Chapter1: Functions And Models
Section: Chapter Questions
Problem 1RCC: (a) What is a function? What are its domain and range? (b) What is the graph of a function? (c) How...
icon
Related questions
Topic Video
Question
### Integrating Functions

#### Integrate the Given Function:

\[ \int \frac{\sqrt{9 - z^6}}{z^4} \, dz \]

Here is a step-by-step solution to integrate the given function:

1. Simplify the integrand if possible.
2. Determine an appropriate method of integration (e.g., substitution, integration by parts).
3. Perform the integration.
4. Add the constant of integration \( + C \) after integrating.

Use the provided space below to compute the integral:
``` 
[ __________ ]
+ C
```

Feel free to seek additional resources or consult a math textbook for guidance on solving integrals involving radicals and powers. Happy integrating!
Transcribed Image Text:### Integrating Functions #### Integrate the Given Function: \[ \int \frac{\sqrt{9 - z^6}}{z^4} \, dz \] Here is a step-by-step solution to integrate the given function: 1. Simplify the integrand if possible. 2. Determine an appropriate method of integration (e.g., substitution, integration by parts). 3. Perform the integration. 4. Add the constant of integration \( + C \) after integrating. Use the provided space below to compute the integral: ``` [ __________ ] + C ``` Feel free to seek additional resources or consult a math textbook for guidance on solving integrals involving radicals and powers. Happy integrating!
**Indefinite Integral Calculation Guide**

**Problem Statement:**
Find the indefinite integral. You may omit absolute values from natural logarithms.

**Integral to Solve:**
\[ \int \frac{1}{(x+8)\sqrt{x^2 + 16x + 164}} \, dx \]

**Steps to Solve:**

1. **Simplify the Integrand:**
   - Notice the quadratic expression under the square root. 
   - Complete the square for \(x^2 + 16x + 164\).

2. **Complete the Square:**
   - The quadratic \(x^2 + 16x + 164\) can be rewritten as:
     \[ x^2 + 16x + 64 + 100 = (x + 8)^2 + 100 \]
   
   - Thus, the integral becomes:
     \[ \int \frac{1}{(x+8)\sqrt{(x+8)^2 + 100}} \, dx \]

3. **Substitution:**
   - Use \( u = x + 8\), hence \( du = dx \):
     \[ \int \frac{1}{u \sqrt{u^2 + 100}} \, du \]

4. **Simplify Using Known Integrals:**
   - Recognize that this is in the form for a standard integral result:
     \[ \int \frac{1}{u \sqrt{u^2 + a^2}} \, du = \frac{1}{a} \ln\left| \frac{u}{a + \sqrt{u^2 + a^2}} \right| + C \]
   
   - Where in this problem \( a = 10 \) (since \(100 = 10^2\)).

5. **Substitute and Simplify:**
   - Substitute back \( u = x + 8 \):
     \[ \int \frac{1}{(x+8)\sqrt{(x+8)^2 + 100}} \, dx = \frac{1}{10} \ln\left|\frac{x+8}{10 + \sqrt{(x+8)^2 + 100}} \right| + C \]

6. **Final Answer:**
   - The final integral result is:
     \[ \frac{1}{10} \ln\
Transcribed Image Text:**Indefinite Integral Calculation Guide** **Problem Statement:** Find the indefinite integral. You may omit absolute values from natural logarithms. **Integral to Solve:** \[ \int \frac{1}{(x+8)\sqrt{x^2 + 16x + 164}} \, dx \] **Steps to Solve:** 1. **Simplify the Integrand:** - Notice the quadratic expression under the square root. - Complete the square for \(x^2 + 16x + 164\). 2. **Complete the Square:** - The quadratic \(x^2 + 16x + 164\) can be rewritten as: \[ x^2 + 16x + 64 + 100 = (x + 8)^2 + 100 \] - Thus, the integral becomes: \[ \int \frac{1}{(x+8)\sqrt{(x+8)^2 + 100}} \, dx \] 3. **Substitution:** - Use \( u = x + 8\), hence \( du = dx \): \[ \int \frac{1}{u \sqrt{u^2 + 100}} \, du \] 4. **Simplify Using Known Integrals:** - Recognize that this is in the form for a standard integral result: \[ \int \frac{1}{u \sqrt{u^2 + a^2}} \, du = \frac{1}{a} \ln\left| \frac{u}{a + \sqrt{u^2 + a^2}} \right| + C \] - Where in this problem \( a = 10 \) (since \(100 = 10^2\)). 5. **Substitute and Simplify:** - Substitute back \( u = x + 8 \): \[ \int \frac{1}{(x+8)\sqrt{(x+8)^2 + 100}} \, dx = \frac{1}{10} \ln\left|\frac{x+8}{10 + \sqrt{(x+8)^2 + 100}} \right| + C \] 6. **Final Answer:** - The final integral result is: \[ \frac{1}{10} \ln\
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps with 1 images

Blurred answer
Knowledge Booster
Chain Rule
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, calculus and related others by exploring similar questions and additional content below.
Recommended textbooks for you
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning
Thomas' Calculus (14th Edition)
Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON
Calculus: Early Transcendentals (3rd Edition)
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781319050740
Author:
Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:
W. H. Freeman
Precalculus
Precalculus
Calculus
ISBN:
9780135189405
Author:
Michael Sullivan
Publisher:
PEARSON
Calculus: Early Transcendental Functions
Calculus: Early Transcendental Functions
Calculus
ISBN:
9781337552516
Author:
Ron Larson, Bruce H. Edwards
Publisher:
Cengage Learning