9-12 Use the Midpoint Rule with the given value of n to approximate the integral. Round the answer to four decimal places. 9. f sin √x dx, n = 4 2 11. S² X Jo x + 1 dx, n = 5 10. f₁' √√x³ + 1 dx, n=5 12. fx sin²x dx, n = 4

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question

12,17 to 20

3. 9-12 Use the Midpoint Rule with the given value of n to
approximate the integral. Round the answer to four decimal
places.
9. fsin√xdx, n = 4
11.
2
X
Jo x + 1
17. lim
n→∞
17-20 Express the limit as a definite integral on the given
interval.
n sin Xi
1 + Xi
n
20. lim
n→∞
n
dx, n = 5
18. lim Σx;√√1 + x²³ Ax, [2,5]
n→∞ i=1
i=1
n
Δ.x, [0, π]
19. lim [5(x)³ - 4x*] Ax, [2,7]
n→∞
i=1
1
10. f¹ √√x³ + 1 dx, n = 5
12. fx sin²x dx,
x*
(x*)² + 4
n = = 4
Ax, [1,3]
Transcribed Image Text:3. 9-12 Use the Midpoint Rule with the given value of n to approximate the integral. Round the answer to four decimal places. 9. fsin√xdx, n = 4 11. 2 X Jo x + 1 17. lim n→∞ 17-20 Express the limit as a definite integral on the given interval. n sin Xi 1 + Xi n 20. lim n→∞ n dx, n = 5 18. lim Σx;√√1 + x²³ Ax, [2,5] n→∞ i=1 i=1 n Δ.x, [0, π] 19. lim [5(x)³ - 4x*] Ax, [2,7] n→∞ i=1 1 10. f¹ √√x³ + 1 dx, n = 5 12. fx sin²x dx, x* (x*)² + 4 n = = 4 Ax, [1,3]
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 3 steps with 21 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,