1 Starting With Matlab 2 Creating Arrays 3 Mathematical Operations With Arrays 4 Using Script Files And Managing Data 5 Two-dimensional Plots 6 Programming In Matlab 7 User-defined Functions And Function Files 8 Polynomials, Curve Fitting, And Interpolation 9 Applications In Numerical Analysis 10 Three-dimensional Plots 11 Symbolic Math Chapter1: Starting With Matlab
Chapter Questions Section: Chapter Questions
Problem 1P Problem 2P: Calculate: (a) 8+802.6+e3.53 (b) 175)+733.131/4+550.41 Problem 3P: Calculate: (a) 23+453160.7+log10589006 (b) (36.12.25)(e2.3+20) Problem 4P: Calculate: (a) 3.822.754125+5.2+1.853.5 (b) 2.110615.21053610113 Problem 5P: Calculate: (a)sin0.2cos/6+tan72 (b) (tan64cos15)+sin237cos220 Problem 6P: Define the varialbe z as z = 4.5; than evaluate: (a) 0.44+3.1z2162.3z80.7 (b) z323/z2+17.53 Problem 7P: Define the variable t as t= 3.2; then evalute: (a) 12e2t3.81t3 (b) 6t2+6t2t21 Problem 8P: Define the variable xandy as x = 6.5 and y = 3.8; then evaluate: (a) x2+y22/3+xyyx (b) x+yxy2+2x2xy2 Problem 9P: Define the variables a, b, c, and d as: c= 4.6, d = 1.7, a = cd2, and b=c+acd; then evaluate: (a)... Problem 10P: Two trigonometric identities are given by: (a) cos2xsin2x=12sin2x (b) tanxsinx2tanx=1cosx2 For each... Problem 11P: Two trigonometric identities are given by: (a) sinx+cosx2=1+2sinxcosx (b)... Problem 12P: Define two variables: alpha =8, and beta = 6. Using these variables, show that the following... Problem 13P: Given: x2cosxdx=2xcosx+x22sinx . Use MATLAB to calculaet the following difinite integral:... Problem 14P: A rectangular box has the dimensions shown. (a) Determine the angle BAC to the nearest degree. (b)... Problem 15P: The are length of a segment of a parabola ABC is given by: LABC=a2+4h2+2ha+2ha2+1 Determine LABC if... Problem 16P: The three shown circles, with radius 15 in., 10.5 in., and 4.5 in., are tangent to each other. (a)... Problem 17P: A frustum of cone is filled with ice cream such that the portion above the cone is a hemisphere.... Problem 18P: 18. In the triangle shown a =27 in., b 43 in., c=57 in. Define a, b, and c as variables, and then:... Problem 19P: For the triangle shown, a = 72°, ß=43°, and its perimeter is p = 114 mm. Define a, ß, and p, as... Problem 20P: The distance d from a point P (xp,yp,zp) to the line that passes through the two points A (xA,yA,zA)... Problem 21P: The perimeter of an ellipse can be approximated by: P=(a+b)3(3a+b)(a+3b)a+b Calculate the perimeter... Problem 22P: A total of 4217 eggs have w be packed in boxes that can hold 36 eggs each. By typing one line... Problem 23P: A total of 777 people have to be transported using buses that have 46 seats and vans that have 12... Problem 24P: Change the display to format long g. Assign the number 7E8/13 to a variable, and then use the... Problem 25P: The voltage difference Vabbetween points a and b in the Wheatstone bride circuit is given by:... Problem 26P: The current in a series RCL circuit is given by: I=VR2(L1C)2 Where =2 f. Calculate I for the... Problem 27P: The monthly payment M of a mortgage P for n years with a fixed annual interest rate r can be... Problem 28P: The number of permutations nProf taking r Objects out of n objects without repetition is given by:... Problem 29P: The number of combinations Cn,r of taking r objects out of n objects is given by: aye In the... Problem 30P: The equivalent resistance of two resistors R1and R2connected in parallel is given by Req=R1R2R1+R2 .... Problem 31P: The output voltage Voutin the circuit shown is given by (Millman’s theorem):... Problem 32P: Radioactive decay of carbon-14 is used for estimating the age of organic material. The decay is... Problem 33P: The greatest common divisor is the largest positive integer that divides the numbers without a... Problem 34P: The amount of energy E (in joules) that is released by an earthquake is given by: E=1.741019101.44M... Problem 35P: According to the Doppler effect of light, the perceived wavelength ?p, of a light source with a... Problem 36P: Newton’s law of cooling gives the temperature T(t) of an object at time tin terms of T0, its... Problem 37P: The velocity v and the falling distance d as a function of time of a skydiver that experience the... Problem 38P: Use the Help Window to find a display format that displays the output as a ratio of integers. For... Problem 39P: Gosper’s approximation for factorials is given by: n!=2n+13nnen Use the formula for calculating 19!.... Problem 40P: According to Newton’s law of universal gravitation, the attraction force between two bodies is given... Problem 1P
Related questions
Find the area of the shaded region. The graph to the right depicts IQ scores of adults, and those scores are normally distributed with a mean of 100 and a standard deviation of 15.
Transcribed Image Text: Standard Normal Table (Page 2)
z
0.0
៩៩៩ ៨៩៤ ៩ ជ ន ៨៩៖ ៖ ន ទ ន 9 8
0.2
0.3
0.4
0.5
0.6
0.7
0.8
21
2.2
2.3
24
2.5
26
2.7
2.8
2.9
3.0
3.1
3.2
3.3
Standard Normal (2) Distribution: Cumulative Area from the LEFT
.00
5000
5398
5793
6179
6554
6915
7257
7580
7881
8159
8413
8643
8849
9032
9192
9332
3.4
3.50
and up
9452
9554
9641
9713
9772
9821
01
5040
5438
5832
6217
6591
6950
7291
7611
7910
8186
8438
8665
8869
9049
9207
9345
9463
9564
9649
9861
9893
9918
9938
9953
9965
9974
9981
9987
9990
9993
9995
9997
9999
9719
9778
9826
9864
9896
9920
9940
9955
9966
9975
9982
9987
.02
5080
5478
z score
Area
1.645 0.9500
2.575 0.9950
5871
6255
6628
6985
7324
7642
7939
8212
8461
8686
8888
9066
9222
9991
9993
9995
9997
9357
9474
9573
9656
.9726
9783
9830
9868
9898
9922
9941
9956
9967
9976
9982
9987
POSITIVE Z Scores
9991
9994
9995
9997
.03
5120
5517
5910
6293
6664
7019
7357
7673
7967
8238
8485
8708
8907
.9082
9236
9370
9484
9582
9664
9732
9788
9834
9871
9901
9925
9943
9957
9968
9977
.9983
9988
9991
9994
9996
.9997
.04
5160
5199
5557
5596
5948
5987
6331
6368
6700 6736
.7054
7088
7389
7422
7734
8023
8289
.8531
8749
8944
9115
9265
9394
9495. 9505
.9599
.9678
9744
7704
7995
8264
.8508
8729
8925
9099
9251
9382
.9591
9671
9738
9793
.9838
.9875
.9904
.9927
9945
9959
9969
.9977
9984
.9988
9992
9994
9996
.9997
NOTE: For values of z above 3.49, use 0.9999 for the area.
"Use these common values that result from interpolation:
.05
.9798
.9842
9878
.9906
9929
9946
9960
.9970
9978
9984
9989
9992
9994
9996
9997
.06
5239
5636
6026
6406
.6772
.7123
7454
.7764
.8051
.8315
.8554
8770
8962
.9131
.9279
.9406
9515
.9608
.9686
.9750
.9803
.9846
.9881
.9909
.9931
9948
9961
.9971
9979
9985
.9989
.9992
9994
9996
9997
.07
5279
5675
6064
.6443
6808
7157
7486
7794
8078
8340
8577
8790
8980
9147
9292
9418
9525
9616
9693
9756
.9808
9850
.9884
.9911
9932
9949
9972
9979
9985
9989
9992
08
9995
9996
9997
5319
5714
6103
6480
6844
.7190
7517
7823
8106
8365
.8599
8810
8997
9162
9306
9429
9535
.9625
9699
9761
9812
99629963
9854
.9887
9913
9934
9951
9973
9980
9986
9990
9993
9995
9996
9997
09
5359
5753
6141
6517
6879
7224
.7549
.7852
8133
.8389
.8621
8830
9015
9177
.9319
9441
9545
.9633
9706
.9767
9817
.9857
.9890
9916
9936
9952
9964
.9974
9981
9986
9990
9993
9995
9997
9998
Common Critical Value
Confidence | Critical
Level
Value
0.90
1.645
0.95
1.96
80
115
Transcribed Image Text: Standard Normal Table (Page 1)
Z
NEVATIVEZ
<-3.50
and
lower
-3.4
<-3.3
-3.2
-3.1
-3.0
-2.9
-2.8
-2.7
-26
-2.5
<-24
<-2.3
-22
-2.1
-20
-1.9
-18
-17
-16
-1.5
-14
-1.3
-1.2
-1.1
-1.0
-0.9
-0.8
-0.7
-0.6
-0.5
-0.4
-0.3
-0.2
-0.1
-0.0
.00
0001
0003
.0005
0007
0010
0013
0019
.0026
.0035
VL
0047
0062
0082
0107
0139
0179
0228
0287
0359
0446
0548
0668
0808
0968
1151
1357
1587
1841
2119
2420
2743
3085
3446
3821
4207
4602
.5000
Standard Normal (z) Distribution: Cumulative Area from the LEFT
.01
0003
.0005
0007
0009
0013
0018
0025
0034
0045
0060
0080
0104
0136
0174
0222
0281
0351
0436
0537
0655
0793
0951
1131
1335
1562
1814
z score
Area
-1.645 0.0500
-2.575 0.0050
2090
2389
2709
3050
3409
3783
4168
4562
4960
2 JU
02
.0003
.0005
.0006
0009
0013
.0018
CUISS
0024
.0033
0044
0059
0078
0102
.0132
0170
0217
0274
.0344
0427
0526
0643
0778
0934
1112
1314
1539
1788
2061
2358
2676
3015
3372
3745
4129
4522
4920
.03
.0003
.0004
.0006
.0009
.0012
0017
.0023
.0032
0043
0057
0075
.0099
0129
.0166
0212
0268
0336
0418
0516
0630
0764
0918
1093
1292
1515
1762
2033
2327
2643
2981
3336
3707
4090
4483
4880
.04
.0003
0004
.0006
0008
0012
0016
0023
0031
0041
0055
0073
0096
0125
0162
0207
0262
0329
0409
0505
0618
0749
0901
1075
.1271
1492
1736
2005
2296
2611
2946
.3300
3669
4052
.4443
4840
NOTE: For values of z below -3.49, use 0.0001 for the area.
Use these common values that result from interpolation:
.05
.0003
.0004
.0006
.0008
.0011
.0016
.0022
.0030
,0040
.0054
.0071
.0094
0122
.0158
.0202
.0256
.0322
.0401
* .0495
.0606
.0735
.0885
1056
1251
.1469
1711
1977
2266
2578
2912
3264
.3632
4013
.4404
4801
.06
0003
0004
0006
0008
0011
.0015
0021
.0029
0039
0052
0069
0091
0119
0154
0197
.0250
0314
0392
0485
0594
0721
0869
1038
1230
1446
1685
1949
2236
2546
2877
Z
3228
3594
3974
4364
4761
.07
0003
.0004
.0005
.0008
.0011
.0015
.0021
.0028
0038
.0051
.0068
.0089
.0116
.0150
0192
.0244
.0307
.0384
.0475
0582
.0708
0853
1020
1210
1423
1660
1922
2206
2514
2843
0
3192
.3557
.3936
4325
.4721
.08
0003
0004
.0005
0007
0010
.0014
.0020
0027
.0037
. 0049
.0066
0087
0113
0146
.0188
0239
.0301
.0375
0465
.0571
0694
0838
1003
1190
1401
1635
1894
2177
2483
2810
3156
3520
3897
4286
4681
.09
.0002
.0003
0005
0007
0010
.0014
0019
.0026
.0036
.0048
.0064
0084
0110
.0143
.0183
0233
0294
0367
0455
0559
0681
0823
0985
1170
1379
1611
1867
2148
2451
2776
3121
3483
3859
,4247
4641
Definition Definition Measure of central tendency that is the average of a given data set. The mean value is evaluated as the quotient of the sum of all observations by the sample size. The mean, in contrast to a median, is affected by extreme values. Very large or very small values can distract the mean from the center of the data. Arithmetic mean: The most common type of mean is the arithmetic mean. It is evaluated using the formula: μ = 1 N ∑ i = 1 N x i Other types of means are the geometric mean, logarithmic mean, and harmonic mean. Geometric mean: The nth root of the product of n observations from a data set is defined as the geometric mean of the set: G = x 1 x 2 ... x n n Logarithmic mean: The difference of the natural logarithms of the two numbers, divided by the difference between the numbers is the logarithmic mean of the two numbers. The logarithmic mean is used particularly in heat transfer and mass transfer. ln x 2 − ln x 1 x 2 − x 1 Harmonic mean: The inverse of the arithmetic mean of the inverses of all the numbers in a data set is the harmonic mean of the data. 1 1 x 1 + 1 x 2 + ...
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step 1: Given Information:
VIEW
Step 2: Area of shaded region:
VIEW
Step by step
Solved in 3 steps