8.7. A steam power plant operating on a regenerative cycle, as illustrated in Fig. 8.5, includes just one feedwater heater. Steam enters the turbine at 4500 kPa and 500°C and exhausts at 20 kPa. Steam for the feedwater heater is extracted from the turbine at 350 kPa, and in condensing raises the temperature of the feedwater to within 6°C of its condensation temperature at 350 kPa. If the turbine and pump efficiencies are both 0.78, what is the thermal efficiency of the cycle, and what fraction of the steam entering the turbine is extracted for the feedwater heater?

Introduction to Chemical Engineering Thermodynamics
8th Edition
ISBN:9781259696527
Author:J.M. Smith Termodinamica en ingenieria quimica, Hendrick C Van Ness, Michael Abbott, Mark Swihart
Publisher:J.M. Smith Termodinamica en ingenieria quimica, Hendrick C Van Ness, Michael Abbott, Mark Swihart
Chapter1: Introduction
Section: Chapter Questions
Problem 1.1P
icon
Related questions
Question

I want to see the solution of it and the brief picture of the manufactuaring process like fig.8.5

8.7. A steam power plant operating on a regenerative cycle, as illustrated in Fig. 8.5,
includes just one feedwater heater. Steam enters the turbine at 4500 kPa and 500°C
and exhausts at 20 kPa. Steam for the feedwater heater is extracted from the turbine
at 350 kPa, and in condensing raises the temperature of the feedwater to within 6°C
of its condensation temperature at 350 kPa. If the turbine and pump efficiencies are
both 0.78, what is the thermal efficiency of the cycle, and what fraction of the steam
entering the turbine is extracted for the feedwater heater?
Transcribed Image Text:8.7. A steam power plant operating on a regenerative cycle, as illustrated in Fig. 8.5, includes just one feedwater heater. Steam enters the turbine at 4500 kPa and 500°C and exhausts at 20 kPa. Steam for the feedwater heater is extracted from the turbine at 350 kPa, and in condensing raises the temperature of the feedwater to within 6°C of its condensation temperature at 350 kPa. If the turbine and pump efficiencies are both 0.78, what is the thermal efficiency of the cycle, and what fraction of the steam entering the turbine is extracted for the feedwater heater?
226C
보일러
P2,900 kPa
m
231.97
C
P 8,600 kPa 500℃
181C
P1,150 kPa
186.05
•C
136C
급수 가열기
P375 kPa
m
141.30
C
191C
터빈
P87,69 kPa
m
96.00
C
46°C
펌프
그림 8.5 급수 가열기가 있는 수증기 능력 플랜트
P10 kPa
응축기
45C
Transcribed Image Text:226C 보일러 P2,900 kPa m 231.97 C P 8,600 kPa 500℃ 181C P1,150 kPa 186.05 •C 136C 급수 가열기 P375 kPa m 141.30 C 191C 터빈 P87,69 kPa m 96.00 C 46°C 펌프 그림 8.5 급수 가열기가 있는 수증기 능력 플랜트 P10 kPa 응축기 45C
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 5 steps with 1 images

Blurred answer
Recommended textbooks for you
Introduction to Chemical Engineering Thermodynami…
Introduction to Chemical Engineering Thermodynami…
Chemical Engineering
ISBN:
9781259696527
Author:
J.M. Smith Termodinamica en ingenieria quimica, Hendrick C Van Ness, Michael Abbott, Mark Swihart
Publisher:
McGraw-Hill Education
Elementary Principles of Chemical Processes, Bind…
Elementary Principles of Chemical Processes, Bind…
Chemical Engineering
ISBN:
9781118431221
Author:
Richard M. Felder, Ronald W. Rousseau, Lisa G. Bullard
Publisher:
WILEY
Elements of Chemical Reaction Engineering (5th Ed…
Elements of Chemical Reaction Engineering (5th Ed…
Chemical Engineering
ISBN:
9780133887518
Author:
H. Scott Fogler
Publisher:
Prentice Hall
Process Dynamics and Control, 4e
Process Dynamics and Control, 4e
Chemical Engineering
ISBN:
9781119285915
Author:
Seborg
Publisher:
WILEY
Industrial Plastics: Theory and Applications
Industrial Plastics: Theory and Applications
Chemical Engineering
ISBN:
9781285061238
Author:
Lokensgard, Erik
Publisher:
Delmar Cengage Learning
Unit Operations of Chemical Engineering
Unit Operations of Chemical Engineering
Chemical Engineering
ISBN:
9780072848236
Author:
Warren McCabe, Julian C. Smith, Peter Harriott
Publisher:
McGraw-Hill Companies, The