8.29 Two streams containing pyridine and acetic acid at 25°C are mixed and fed into a heat exchanger. Due to the heat-of-mixing effect, it is desired to reduce the temperature after mixing to 25°C using a stream of chilled ethylene glycol as indicated in the diagram. Calculate the mass flow rate of ethylene glycol needed. The heat capacity of ethylene glycol at these condi- tions is approximately 2.8 kJ/(kg K), and the enthalpy change of mixing (Amix H) is given below. Pyridine 1 kmol/min T= 25°C Acetic acid 1 kmol/min T= 25°C Pyridine Mole Fraction 0.0371 0.0716 0.1032 Data: Heat of mixing for pyridine (C₂H₂N) and acetic acid at 25°C [H. Kehlen, F. Herold and H.- J. Rademacher, Z. Phys. Chem. (Leipzig), 261, 809 (1980)]. 0.1340 0.1625 0.1896 Ethylene glycol T=25°C 0.2190 03401 Amir H (J/mol) -1006 -1851 -2516 -3035 -3427 -3765 -4043 1371 Ethylene glycol T=5°C Pyridine +acetic acid 2 kmol/min T= 25°C Pyridine Mole Fraction 0.4076 0.4235 0.4500 0.4786 0.5029 0.5307 0.5621 O FOC AmixH (J/mol) -4880 -4857 -4855 -4833 -4765 -4669 -4496 1252

Introduction to Chemical Engineering Thermodynamics
8th Edition
ISBN:9781259696527
Author:J.M. Smith Termodinamica en ingenieria quimica, Hendrick C Van Ness, Michael Abbott, Mark Swihart
Publisher:J.M. Smith Termodinamica en ingenieria quimica, Hendrick C Van Ness, Michael Abbott, Mark Swihart
Chapter1: Introduction
Section: Chapter Questions
Problem 1.1P
icon
Related questions
Question

8.29 Show complete solution and diagram

8.29 Two streams containing pyridine and acetic acid at
25°C are mixed and fed into a heat exchanger. Due
to the heat-of-mixing effect, it is desired to reduce the
temperature after mixing to 25°C using a stream of
chilled ethylene glycol as indicated in the diagram.
Calculate the mass flow rate of ethylene glycol needed.
The heat capacity of ethylene glycol at these condi-
tions is approximately 2.8 kJ/(kg K), and the enthalpy
change of mixing (Amix H) is given below.
Pyridine
1 kmol/min
T= 25°C
Acetic acid
1 kmol/min
T= 25°C
Pyridine Mole
Fraction
0.0371
0.0716
0.1032
0.1340
0.1625
Data: Heat of mixing for pyridine (C₂H₂N) and
acetic acid at 25°C [H. Kehlen, F. Herold and H.-
J. Rademacher, Z. Phys. Chem. (Leipzig), 261, 809
(1980)].
0.1896
0.2190
0.2494
0.2760
0.3006
Ethylene glycol
T=25°C
0.3234
0.3461
0.3671
0.3874
0.3991
Amir H
(J/mol)
-1006
-1851
-2516
-3035
-3427
-3765
-4043
-4271
-4440
-4571
-4676
-4760
-4819
-4863
-4882
Ethylene glycol
T=5°C
Pyridine
+acetic acid
2 kmol/min
T= 25°C
Pyridine Mole
Fraction
0.4076
0.4235
0.4500
0.4786
0.5029
0.5307
0.5621
0.5968
0.6372
0.6747
0.7138
0.7578
0.8083
0.8654
0.9297
Amir H
(J/mol)
-4880
-4857
-4855
-4833
-4765
-4669
-4496
-4253
-3950
-3547
-3160
-2702
-2152
-1524
-806
Transcribed Image Text:8.29 Two streams containing pyridine and acetic acid at 25°C are mixed and fed into a heat exchanger. Due to the heat-of-mixing effect, it is desired to reduce the temperature after mixing to 25°C using a stream of chilled ethylene glycol as indicated in the diagram. Calculate the mass flow rate of ethylene glycol needed. The heat capacity of ethylene glycol at these condi- tions is approximately 2.8 kJ/(kg K), and the enthalpy change of mixing (Amix H) is given below. Pyridine 1 kmol/min T= 25°C Acetic acid 1 kmol/min T= 25°C Pyridine Mole Fraction 0.0371 0.0716 0.1032 0.1340 0.1625 Data: Heat of mixing for pyridine (C₂H₂N) and acetic acid at 25°C [H. Kehlen, F. Herold and H.- J. Rademacher, Z. Phys. Chem. (Leipzig), 261, 809 (1980)]. 0.1896 0.2190 0.2494 0.2760 0.3006 Ethylene glycol T=25°C 0.3234 0.3461 0.3671 0.3874 0.3991 Amir H (J/mol) -1006 -1851 -2516 -3035 -3427 -3765 -4043 -4271 -4440 -4571 -4676 -4760 -4819 -4863 -4882 Ethylene glycol T=5°C Pyridine +acetic acid 2 kmol/min T= 25°C Pyridine Mole Fraction 0.4076 0.4235 0.4500 0.4786 0.5029 0.5307 0.5621 0.5968 0.6372 0.6747 0.7138 0.7578 0.8083 0.8654 0.9297 Amir H (J/mol) -4880 -4857 -4855 -4833 -4765 -4669 -4496 -4253 -3950 -3547 -3160 -2702 -2152 -1524 -806
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 3 steps with 3 images

Blurred answer
Recommended textbooks for you
Introduction to Chemical Engineering Thermodynami…
Introduction to Chemical Engineering Thermodynami…
Chemical Engineering
ISBN:
9781259696527
Author:
J.M. Smith Termodinamica en ingenieria quimica, Hendrick C Van Ness, Michael Abbott, Mark Swihart
Publisher:
McGraw-Hill Education
Elementary Principles of Chemical Processes, Bind…
Elementary Principles of Chemical Processes, Bind…
Chemical Engineering
ISBN:
9781118431221
Author:
Richard M. Felder, Ronald W. Rousseau, Lisa G. Bullard
Publisher:
WILEY
Elements of Chemical Reaction Engineering (5th Ed…
Elements of Chemical Reaction Engineering (5th Ed…
Chemical Engineering
ISBN:
9780133887518
Author:
H. Scott Fogler
Publisher:
Prentice Hall
Process Dynamics and Control, 4e
Process Dynamics and Control, 4e
Chemical Engineering
ISBN:
9781119285915
Author:
Seborg
Publisher:
WILEY
Industrial Plastics: Theory and Applications
Industrial Plastics: Theory and Applications
Chemical Engineering
ISBN:
9781285061238
Author:
Lokensgard, Erik
Publisher:
Delmar Cengage Learning
Unit Operations of Chemical Engineering
Unit Operations of Chemical Engineering
Chemical Engineering
ISBN:
9780072848236
Author:
Warren McCabe, Julian C. Smith, Peter Harriott
Publisher:
McGraw-Hill Companies, The