8.10 Apply the variation function = er to the hydrogen atom. Choose the parameter c (which is real) to minimize the variational integral, and calculate the percent error in the ground-state energy. int: -2π [ ø*ødr = [3²" ["* "*° e e-2cr² sino drdodo 0 JO ∞0 : 2 (2TT) = e-2cr² dr ħ² p¹Â q dr = √ ² - 2 ₁ - (c²r²e-²cr – 2cre-2cr) – Ze¹² re-2cr dr Zer21 = 2 (2π) [-2² (2-²) - 202²] 8c3 4c² -2π e-2cr dr ["* sinode [²" d4

icon
Related questions
Question
8.10 Apply the variation function = er to the hydrogen atom. Choose the parameter c (which is
real) to minimize the variational integral, and calculate the percent error in the ground-state energy.
int:
-2π
[ ø*ødr = [²" ["* "*°
φάτ
0
JO
=
: 2 (277)
e-2cr² sino drdodo
ofe
*Âødt =
=
e-2cr² dr
ħ²
· S0₁ | - ²2 μ₁²
-2π
e-2cr] dr [" sinode [2" de
- (c²r²e-2cr -2cre-2cr) - Ze¹2 re-2cr dr
Zer21
= 2 (2π) [-1² (2-2) - 202²]
8c3
4c²
Transcribed Image Text:8.10 Apply the variation function = er to the hydrogen atom. Choose the parameter c (which is real) to minimize the variational integral, and calculate the percent error in the ground-state energy. int: -2π [ ø*ødr = [²" ["* "*° φάτ 0 JO = : 2 (277) e-2cr² sino drdodo ofe *Âødt = = e-2cr² dr ħ² · S0₁ | - ²2 μ₁² -2π e-2cr] dr [" sinode [2" de - (c²r²e-2cr -2cre-2cr) - Ze¹2 re-2cr dr Zer21 = 2 (2π) [-1² (2-2) - 202²] 8c3 4c²
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 3 steps with 2 images

Blurred answer
Similar questions