Calculus: Early Transcendentals
8th Edition
ISBN:9781285741550
Author:James Stewart
Publisher:James Stewart
Chapter1: Functions And Models
Section: Chapter Questions
Problem 1RCC: (a) What is a function? What are its domain and range? (b) What is the graph of a function? (c) How...
Related questions
Question
![**Instructions for Problem #8:**
Find the line tangent to \( f(x) = \sin(\ln(x)) \) at point \( (1, 0) \).
**Guidance for Solving the Problem:**
1. **Understand the Function:** You are working with a composite function where you take the sine of the natural logarithm of \( x \).
2. **Find the Derivative:** Use the chain rule to differentiate \( f(x) \).
- Let \( u = \ln(x) \), so \( f(x) = \sin(u) \).
- \( f'(x) = \cos(u) \cdot u'(x) \).
- Since \( u = \ln(x) \), \( u'(x) = \frac{1}{x} \).
- Therefore, \( f'(x) = \cos(\ln(x)) \cdot \frac{1}{x} \).
3. **Evaluate the Derivative at \( x = 1 \):**
- Substitute \( x = 1 \) into the derivative: \( f'(1) = \cos(\ln(1)) \cdot \frac{1}{1} \).
- Since \( \ln(1) = 0 \), \( \cos(0) = 1 \), so \( f'(1) = 1 \).
4. **Equation of the Tangent Line:**
- Use the point-slope form of the line: \( y - y_1 = m(x - x_1) \).
- Here, \( m = 1 \), \( (x_1, y_1) = (1, 0) \).
- So, the equation is \( y - 0 = 1(x - 1) \).
- Simplifies to \( y = x - 1 \).
**Conclusion:**
The equation of the tangent line to \( f(x) = \sin(\ln(x)) \) at the point \( (1, 0) \) is \( y = x - 1 \).](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2Fe8fced0e-397a-4917-a59c-2ce88a2c300f%2F6abfab5e-3b8d-4cff-a85e-3d5a840aeace%2Fwfcrrh_processed.jpeg&w=3840&q=75)
Transcribed Image Text:**Instructions for Problem #8:**
Find the line tangent to \( f(x) = \sin(\ln(x)) \) at point \( (1, 0) \).
**Guidance for Solving the Problem:**
1. **Understand the Function:** You are working with a composite function where you take the sine of the natural logarithm of \( x \).
2. **Find the Derivative:** Use the chain rule to differentiate \( f(x) \).
- Let \( u = \ln(x) \), so \( f(x) = \sin(u) \).
- \( f'(x) = \cos(u) \cdot u'(x) \).
- Since \( u = \ln(x) \), \( u'(x) = \frac{1}{x} \).
- Therefore, \( f'(x) = \cos(\ln(x)) \cdot \frac{1}{x} \).
3. **Evaluate the Derivative at \( x = 1 \):**
- Substitute \( x = 1 \) into the derivative: \( f'(1) = \cos(\ln(1)) \cdot \frac{1}{1} \).
- Since \( \ln(1) = 0 \), \( \cos(0) = 1 \), so \( f'(1) = 1 \).
4. **Equation of the Tangent Line:**
- Use the point-slope form of the line: \( y - y_1 = m(x - x_1) \).
- Here, \( m = 1 \), \( (x_1, y_1) = (1, 0) \).
- So, the equation is \( y - 0 = 1(x - 1) \).
- Simplifies to \( y = x - 1 \).
**Conclusion:**
The equation of the tangent line to \( f(x) = \sin(\ln(x)) \) at the point \( (1, 0) \) is \( y = x - 1 \).
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 2 steps with 2 images
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Recommended textbooks for you
![Calculus: Early Transcendentals](https://www.bartleby.com/isbn_cover_images/9781285741550/9781285741550_smallCoverImage.gif)
Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning
![Thomas' Calculus (14th Edition)](https://www.bartleby.com/isbn_cover_images/9780134438986/9780134438986_smallCoverImage.gif)
Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON
![Calculus: Early Transcendentals (3rd Edition)](https://www.bartleby.com/isbn_cover_images/9780134763644/9780134763644_smallCoverImage.gif)
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON
![Calculus: Early Transcendentals](https://www.bartleby.com/isbn_cover_images/9781285741550/9781285741550_smallCoverImage.gif)
Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning
![Thomas' Calculus (14th Edition)](https://www.bartleby.com/isbn_cover_images/9780134438986/9780134438986_smallCoverImage.gif)
Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON
![Calculus: Early Transcendentals (3rd Edition)](https://www.bartleby.com/isbn_cover_images/9780134763644/9780134763644_smallCoverImage.gif)
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON
![Calculus: Early Transcendentals](https://www.bartleby.com/isbn_cover_images/9781319050740/9781319050740_smallCoverImage.gif)
Calculus: Early Transcendentals
Calculus
ISBN:
9781319050740
Author:
Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:
W. H. Freeman
![Precalculus](https://www.bartleby.com/isbn_cover_images/9780135189405/9780135189405_smallCoverImage.gif)
![Calculus: Early Transcendental Functions](https://www.bartleby.com/isbn_cover_images/9781337552516/9781337552516_smallCoverImage.gif)
Calculus: Early Transcendental Functions
Calculus
ISBN:
9781337552516
Author:
Ron Larson, Bruce H. Edwards
Publisher:
Cengage Learning