8. Let F = xyzi + (y² + 1)ĵ + z³k and S be the surface of the cube 0 < x, y, z < 1. (a) Evaluate the surface integral S S;(V × F) · d§ using the divergence theorem (hint: is there a helpful vector identity?). (b) Evaluate the surface integral S Ss(V × F) · dS using Stokes' theorem (hint: is there a boundary?)
8. Let F = xyzi + (y² + 1)ĵ + z³k and S be the surface of the cube 0 < x, y, z < 1. (a) Evaluate the surface integral S S;(V × F) · d§ using the divergence theorem (hint: is there a helpful vector identity?). (b) Evaluate the surface integral S Ss(V × F) · dS using Stokes' theorem (hint: is there a boundary?)
Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Related questions
Question
Evaluate the surface
![8. Let F = xyzî + (y? + 1)ĵ + 2³k and S be the surface of the cube 0 < x, y, z < 1.
(a) Evaluate the surface integral f Ss(V × F) · dS using the divergence theorem (hint:
is there a helpful vector identity?).
(b) Evaluate the surface integral S Ss(V x F) · dS using Stokes' theorem (hint: is there
a boundary?)](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2Fbb6e2165-5977-4772-9a71-150d726bd905%2Fa6d3d2b1-7f40-4eeb-83d2-6158b6f2977b%2Ftyvmbk_processed.png&w=3840&q=75)
Transcribed Image Text:8. Let F = xyzî + (y? + 1)ĵ + 2³k and S be the surface of the cube 0 < x, y, z < 1.
(a) Evaluate the surface integral f Ss(V × F) · dS using the divergence theorem (hint:
is there a helpful vector identity?).
(b) Evaluate the surface integral S Ss(V x F) · dS using Stokes' theorem (hint: is there
a boundary?)
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
Step 1
Given that
S be the surface of the cube
Now,
a)Using divergence theorem,
Here,
Thus, the integral value becomes 0.
Step by step
Solved in 2 steps
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, advanced-math and related others by exploring similar questions and additional content below.Recommended textbooks for you
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Mathematics For Machine Technology](https://www.bartleby.com/isbn_cover_images/9781337798310/9781337798310_smallCoverImage.jpg)
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
![Basic Technical Mathematics](https://www.bartleby.com/isbn_cover_images/9780134437705/9780134437705_smallCoverImage.gif)
![Topology](https://www.bartleby.com/isbn_cover_images/9780134689517/9780134689517_smallCoverImage.gif)