8. Given the space curve r(t) = (sin²t, cos't, tant), find an equation of the tangent line in parametric form to this curve when t ==. 4

Calculus: Early Transcendentals
8th Edition
ISBN:9781285741550
Author:James Stewart
Publisher:James Stewart
Chapter1: Functions And Models
Section: Chapter Questions
Problem 1RCC: (a) What is a function? What are its domain and range? (b) What is the graph of a function? (c) How...
icon
Related questions
Question
8 on paper please
### Problem 8:

**Given the space curve** \( \mathbf{r}(t) = \langle \sin^2{t}, \cos^2{t}, \tan{t} \rangle \), **find an equation of the tangent line in parametric form to this curve when** \( t = \frac{\pi}{4} \).

---

In order to solve this problem, we need to:

1. **Evaluate** \( \mathbf{r}(t) \) at \( t = \frac{\pi}{4} \).
2. **Find the derivative** \( \mathbf{r}'(t) \), which gives the direction of the tangent line.
3. **Evaluate** \( \mathbf{r}'(t) \) at \( t = \frac{\pi}{4} \).
4. **Formulate the parametric equations** for the tangent line using the point from step 1 and the direction vector from step 3.

#### Step-by-Step Solution:

1. **Evaluate** \( \mathbf{r}(t) \) at \( t = \frac{\pi}{4} \):
   \[
   \mathbf{r}\left( \frac{\pi}{4} \right) = \left\langle \sin^2{\left( \frac{\pi}{4} \right)}, \cos^2{\left( \frac{\pi}{4} \right)}, \tan{\left( \frac{\pi}{4} \right)} \right\rangle
   \]
   Given \( \sin\left( \frac{\pi}{4} \right) = \frac{\sqrt{2}}{2} \) and \( \cos\left( \frac{\pi}{4} \right) = \frac{\sqrt{2}}{2} \), we have:
   \[
   \mathbf{r}\left( \frac{\pi}{4} \right) = \left\langle \left( \frac{\sqrt{2}}{2} \right)^2, \left( \frac{\sqrt{2}}{2} \right)^2, 1 \right\rangle = \left\langle \frac{1}{2}, \frac{1}{2}, 1 \right\rangle
   \]

2. **Find the derivative** \( \mathbf{r}'(t) \
Transcribed Image Text:### Problem 8: **Given the space curve** \( \mathbf{r}(t) = \langle \sin^2{t}, \cos^2{t}, \tan{t} \rangle \), **find an equation of the tangent line in parametric form to this curve when** \( t = \frac{\pi}{4} \). --- In order to solve this problem, we need to: 1. **Evaluate** \( \mathbf{r}(t) \) at \( t = \frac{\pi}{4} \). 2. **Find the derivative** \( \mathbf{r}'(t) \), which gives the direction of the tangent line. 3. **Evaluate** \( \mathbf{r}'(t) \) at \( t = \frac{\pi}{4} \). 4. **Formulate the parametric equations** for the tangent line using the point from step 1 and the direction vector from step 3. #### Step-by-Step Solution: 1. **Evaluate** \( \mathbf{r}(t) \) at \( t = \frac{\pi}{4} \): \[ \mathbf{r}\left( \frac{\pi}{4} \right) = \left\langle \sin^2{\left( \frac{\pi}{4} \right)}, \cos^2{\left( \frac{\pi}{4} \right)}, \tan{\left( \frac{\pi}{4} \right)} \right\rangle \] Given \( \sin\left( \frac{\pi}{4} \right) = \frac{\sqrt{2}}{2} \) and \( \cos\left( \frac{\pi}{4} \right) = \frac{\sqrt{2}}{2} \), we have: \[ \mathbf{r}\left( \frac{\pi}{4} \right) = \left\langle \left( \frac{\sqrt{2}}{2} \right)^2, \left( \frac{\sqrt{2}}{2} \right)^2, 1 \right\rangle = \left\langle \frac{1}{2}, \frac{1}{2}, 1 \right\rangle \] 2. **Find the derivative** \( \mathbf{r}'(t) \
Expert Solution
steps

Step by step

Solved in 3 steps

Blurred answer
Recommended textbooks for you
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning
Thomas' Calculus (14th Edition)
Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON
Calculus: Early Transcendentals (3rd Edition)
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781319050740
Author:
Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:
W. H. Freeman
Precalculus
Precalculus
Calculus
ISBN:
9780135189405
Author:
Michael Sullivan
Publisher:
PEARSON
Calculus: Early Transcendental Functions
Calculus: Early Transcendental Functions
Calculus
ISBN:
9781337552516
Author:
Ron Larson, Bruce H. Edwards
Publisher:
Cengage Learning