8. Find (-1+√3i) by converting to trigonometric form and using the formula for raising powers (DeMoivre's Theroem). Leave your answer in the form a +bi. No decimals. No calculators for this problem.

Trigonometry (11th Edition)
11th Edition
ISBN:9780134217437
Author:Margaret L. Lial, John Hornsby, David I. Schneider, Callie Daniels
Publisher:Margaret L. Lial, John Hornsby, David I. Schneider, Callie Daniels
Chapter1: Trigonometric Functions
Section: Chapter Questions
Problem 1RE: 1. Give the measures of the complement and the supplement of an angle measuring 35°.
icon
Related questions
Question
### Complex Numbers and DeMoivre's Theorem

#### Problem Statement:

8. Find \( \left( -1 + \sqrt{3}i \right)^{10} \) by converting to trigonometric form and using the formula for raising powers (DeMoivre’s Theorem). Leave your answer in the form \( a + bi \). No decimals. No calculators for this problem.

#### Step-by-Step Solution:

1. **Convert to Trigonometric (Polar) Form**:
   - Identify the magnitude (r) and argument (θ) of the complex number \( -1 + \sqrt{3}i \).

     \[
     r = \sqrt{(-1)^2 + (\sqrt{3})^2} = \sqrt{1 + 3} = \sqrt{4} = 2
     \]

     \[
     \theta = \tan^{-1}\left(\frac{\sqrt{3}}{-1}\right)
     \]

   Since the complex number \( -1 + \sqrt{3}i \) lies in the second quadrant, where the tangent is positive but the x-component is negative, the angle is:

     \[
     \theta = \pi - \frac{\pi}{3} = \frac{2\pi}{3}
     \]

   Thus, the trigonometric form is:

     \[
     -1 + \sqrt{3}i = 2 \left( \cos \frac{2\pi}{3} + i \sin \frac{2\pi}{3} \right)
     \]

2. **Apply DeMoivre’s Theorem**:
   - DeMoivre's Theorem states that for a complex number in polar form \( r (\cos \theta + i \sin \theta) \),

     \[
     \left[r (\cos \theta + i \sin \theta)\right]^n = r^n \left(\cos (n\theta) + i \sin (n\theta)\right)
     \]

   Here, \( r = 2 \), \( \theta = \frac{2\pi}{3} \), and \( n = 10 \):

     \[
     [2 (\cos \frac{2\pi}{3} + i \sin \frac{2\pi}{3}) ]^{10} = 2^{10} (\cos (\frac
Transcribed Image Text:### Complex Numbers and DeMoivre's Theorem #### Problem Statement: 8. Find \( \left( -1 + \sqrt{3}i \right)^{10} \) by converting to trigonometric form and using the formula for raising powers (DeMoivre’s Theorem). Leave your answer in the form \( a + bi \). No decimals. No calculators for this problem. #### Step-by-Step Solution: 1. **Convert to Trigonometric (Polar) Form**: - Identify the magnitude (r) and argument (θ) of the complex number \( -1 + \sqrt{3}i \). \[ r = \sqrt{(-1)^2 + (\sqrt{3})^2} = \sqrt{1 + 3} = \sqrt{4} = 2 \] \[ \theta = \tan^{-1}\left(\frac{\sqrt{3}}{-1}\right) \] Since the complex number \( -1 + \sqrt{3}i \) lies in the second quadrant, where the tangent is positive but the x-component is negative, the angle is: \[ \theta = \pi - \frac{\pi}{3} = \frac{2\pi}{3} \] Thus, the trigonometric form is: \[ -1 + \sqrt{3}i = 2 \left( \cos \frac{2\pi}{3} + i \sin \frac{2\pi}{3} \right) \] 2. **Apply DeMoivre’s Theorem**: - DeMoivre's Theorem states that for a complex number in polar form \( r (\cos \theta + i \sin \theta) \), \[ \left[r (\cos \theta + i \sin \theta)\right]^n = r^n \left(\cos (n\theta) + i \sin (n\theta)\right) \] Here, \( r = 2 \), \( \theta = \frac{2\pi}{3} \), and \( n = 10 \): \[ [2 (\cos \frac{2\pi}{3} + i \sin \frac{2\pi}{3}) ]^{10} = 2^{10} (\cos (\frac
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 3 steps with 2 images

Blurred answer
Recommended textbooks for you
Trigonometry (11th Edition)
Trigonometry (11th Edition)
Trigonometry
ISBN:
9780134217437
Author:
Margaret L. Lial, John Hornsby, David I. Schneider, Callie Daniels
Publisher:
PEARSON
Trigonometry (MindTap Course List)
Trigonometry (MindTap Course List)
Trigonometry
ISBN:
9781305652224
Author:
Charles P. McKeague, Mark D. Turner
Publisher:
Cengage Learning
Algebra and Trigonometry
Algebra and Trigonometry
Trigonometry
ISBN:
9781938168376
Author:
Jay Abramson
Publisher:
OpenStax
Trigonometry (MindTap Course List)
Trigonometry (MindTap Course List)
Trigonometry
ISBN:
9781337278461
Author:
Ron Larson
Publisher:
Cengage Learning