8. Express the following linear systems (from) in the form of matrix equations. { (a). (b). 21 2x1 +3x2 3x2= 1 5х2 5x2 = 2 + + ·[· (i). calculate -5 3 2 -1 ][ 2 3] 0 21 + 2x2 + 3r3 3x3 = 2r1 +5x2 + 3x3 = 1 21 + 8x3 -2 and -40 16 9 (i). calculate 13 -5-3 5 -2 -1 2 }][ 3 (ii). solve the linear system using the matrix method. 5 12 1 2 3 253 and 108 (ii). solve the linear system using the matrix method. 2 i]. 3 -1 1 2 3 253 1 08 -40 16 9 13 -5 -3 5 -2 -1

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
Show full answers and steps to part a) & b)
## Problem 8

### Express the following linear systems in the form of matrix equations.

#### (a)

**System of Equations:**

\[
\begin{cases}
x_1 + 3x_2 = 1 \\
2x_1 + 5x_2 = 2
\end{cases}
\]

**Tasks:**

(i) Calculate the matrix product:

\[
\begin{bmatrix}
-5 & 3 \\
2 & -1
\end{bmatrix}
\begin{bmatrix}
1 & 3 \\
2 & 5
\end{bmatrix}
\]

and 

\[
\begin{bmatrix}
1 & 3 \\
2 & 5
\end{bmatrix}
\begin{bmatrix}
-5 & 3 \\
2 & -1
\end{bmatrix}
\]

(ii) Solve the linear system using the matrix method.

#### (b)

**System of Equations:**

\[
\begin{cases}
x_1 + 2x_2 + 3x_3 = 0 \\
2x_1 + 5x_2 + 3x_3 = 1 \\
x_1 + 8x_3 = -2
\end{cases}
\]

**Tasks:**

(i) Calculate the matrix product:

\[
\begin{bmatrix}
-40 & 16 & 9 \\
13 & -5 & -3 \\
5 & -2 & -1
\end{bmatrix}
\begin{bmatrix}
1 & 2 & 3 \\
2 & 5 & 3 \\
1 & 0 & 8
\end{bmatrix}
\]

and

\[
\begin{bmatrix}
1 & 2 & 3 \\
2 & 5 & 3 \\
1 & 0 & 8
\end{bmatrix}
\begin{bmatrix}
-40 & 16 & 9 \\
13 & -5 & -3 \\
5 & -2 & -1
\end{bmatrix}
\]

(ii) Solve the linear system using the matrix method.
Transcribed Image Text:## Problem 8 ### Express the following linear systems in the form of matrix equations. #### (a) **System of Equations:** \[ \begin{cases} x_1 + 3x_2 = 1 \\ 2x_1 + 5x_2 = 2 \end{cases} \] **Tasks:** (i) Calculate the matrix product: \[ \begin{bmatrix} -5 & 3 \\ 2 & -1 \end{bmatrix} \begin{bmatrix} 1 & 3 \\ 2 & 5 \end{bmatrix} \] and \[ \begin{bmatrix} 1 & 3 \\ 2 & 5 \end{bmatrix} \begin{bmatrix} -5 & 3 \\ 2 & -1 \end{bmatrix} \] (ii) Solve the linear system using the matrix method. #### (b) **System of Equations:** \[ \begin{cases} x_1 + 2x_2 + 3x_3 = 0 \\ 2x_1 + 5x_2 + 3x_3 = 1 \\ x_1 + 8x_3 = -2 \end{cases} \] **Tasks:** (i) Calculate the matrix product: \[ \begin{bmatrix} -40 & 16 & 9 \\ 13 & -5 & -3 \\ 5 & -2 & -1 \end{bmatrix} \begin{bmatrix} 1 & 2 & 3 \\ 2 & 5 & 3 \\ 1 & 0 & 8 \end{bmatrix} \] and \[ \begin{bmatrix} 1 & 2 & 3 \\ 2 & 5 & 3 \\ 1 & 0 & 8 \end{bmatrix} \begin{bmatrix} -40 & 16 & 9 \\ 13 & -5 & -3 \\ 5 & -2 & -1 \end{bmatrix} \] (ii) Solve the linear system using the matrix method.
Expert Solution
steps

Step by step

Solved in 4 steps with 4 images

Blurred answer
Similar questions
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,