8. Compute Jezsqrt(x²+y²)dV using spherical coordinates. E={(x,y,z) | x²+y²+z²<1, x>0,y>0,z>0}, that is, the first octant of the unit ball. Hints: (i) simplifying x²+y² after substitution of spherical variables cracks it open; (ii) first octant determines limits on o and 0.

Elementary Geometry For College Students, 7e
7th Edition
ISBN:9781337614085
Author:Alexander, Daniel C.; Koeberlein, Geralyn M.
Publisher:Alexander, Daniel C.; Koeberlein, Geralyn M.
Chapter7: Locus And Concurrence
Section7.2: Concurrence Of Lines
Problem 7E: Which lines or line segments or rays must be drawn or constructed in a triangle to locate its a...
icon
Related questions
Question
### Problem Statement

Compute the triple integral \( \iiint_{E} z \sqrt{x^2 + y^2} \, dV \) using spherical coordinates. The region \( E \) is defined as:
\[ E = \{ (x, y, z) \mid x^2 + y^2 + z^2 \leq 1,\, x > 0,\, y > 0,\, z > 0 \} \]

This describes the first octant of the unit ball.

**Hints:**
1. Simplifying \( x^2 + y^2 \) after substitution of spherical variables cracks it open.
2. The first octant determines the limits on \( \phi \) and \( \theta \).

**Steps to solve:**
1. Substitute the spherical coordinates:
   - \( x = \rho \sin \phi \cos \theta \)
   - \( y = \rho \sin \phi \sin \theta \)
   - \( z = \rho \cos \phi \)
   
2. Determine the limits for \( \rho \), \( \phi \), and \( \theta \):
   - \( \rho \): \( 0 \leq \rho \leq 1 \)
   - \( \phi \): \( 0 \leq \phi \leq \frac{\pi}{2} \)
   - \( \theta \): \( 0 \leq \theta \leq \frac{\pi}{2} \)
   
3. The integrand \( z \sqrt{x^2 + y^2} \) becomes \( \rho \cos \phi \cdot \rho \sin \phi = \rho^2 \cos \phi \sin \phi \).

4. The volume element \( dV \) in spherical coordinates is \( \rho^2 \sin \phi \, d\rho \, d\phi \, d\theta \).

5. Set up and compute the integral:
\[ \iiint_E z \sqrt{x^2 + y^2} \, dV = \int_0^{\frac{\pi}{2}} \int_0^{\frac{\pi}{2}} \int_0^1 \rho^2 \cos \phi \sin \phi \cdot \rho^2 \sin \phi \, d\rho \, d\
Transcribed Image Text:### Problem Statement Compute the triple integral \( \iiint_{E} z \sqrt{x^2 + y^2} \, dV \) using spherical coordinates. The region \( E \) is defined as: \[ E = \{ (x, y, z) \mid x^2 + y^2 + z^2 \leq 1,\, x > 0,\, y > 0,\, z > 0 \} \] This describes the first octant of the unit ball. **Hints:** 1. Simplifying \( x^2 + y^2 \) after substitution of spherical variables cracks it open. 2. The first octant determines the limits on \( \phi \) and \( \theta \). **Steps to solve:** 1. Substitute the spherical coordinates: - \( x = \rho \sin \phi \cos \theta \) - \( y = \rho \sin \phi \sin \theta \) - \( z = \rho \cos \phi \) 2. Determine the limits for \( \rho \), \( \phi \), and \( \theta \): - \( \rho \): \( 0 \leq \rho \leq 1 \) - \( \phi \): \( 0 \leq \phi \leq \frac{\pi}{2} \) - \( \theta \): \( 0 \leq \theta \leq \frac{\pi}{2} \) 3. The integrand \( z \sqrt{x^2 + y^2} \) becomes \( \rho \cos \phi \cdot \rho \sin \phi = \rho^2 \cos \phi \sin \phi \). 4. The volume element \( dV \) in spherical coordinates is \( \rho^2 \sin \phi \, d\rho \, d\phi \, d\theta \). 5. Set up and compute the integral: \[ \iiint_E z \sqrt{x^2 + y^2} \, dV = \int_0^{\frac{\pi}{2}} \int_0^{\frac{\pi}{2}} \int_0^1 \rho^2 \cos \phi \sin \phi \cdot \rho^2 \sin \phi \, d\rho \, d\
Expert Solution
steps

Step by step

Solved in 3 steps with 26 images

Blurred answer
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
Elementary Geometry For College Students, 7e
Elementary Geometry For College Students, 7e
Geometry
ISBN:
9781337614085
Author:
Alexander, Daniel C.; Koeberlein, Geralyn M.
Publisher:
Cengage,