8 Which vectors (b₁,b2, b3) are in the column space of A? Which combinations of the rows of A give zero? 1 (a) A = 2 263 0 2 5 (b) A = I 1 2 4 24 8

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
**Question 8: Identifying Vectors in the Column Space and Row Combinations to Zero**

Given the matrices below:

**(a) Matrix \( A \)**
\[
A = \begin{bmatrix}
1 & 2 & 1 \\
2 & 6 & 3 \\
0 & 2 & 5
\end{bmatrix}
\]

**(b) Matrix \( A \)**
\[
A = \begin{bmatrix}
1 & 1 & 1 \\
1 & 2 & 4 \\
2 & 4 & 8
\end{bmatrix}
\]

**Tasks:**
1. Determine which vectors \((b_1, b_2, b_3)\) are in the column space of \(A\).
2. Identify which combinations of the rows of \(A\) give zero.

**Explanation:**

- **Column Space**: The column space of a matrix \(A\) is the set of all possible linear combinations of its column vectors.
- **Row Combinations**: Finding row combinations that result in zero involves determining the linear dependence among the rows, often achieved through row reduction or examining the null space.

For each matrix:

**(a) Matrix \( A \) Analysis:**
- Column vectors: 
  \[
  \begin{pmatrix}
  1 \\
  2 \\
  0 
  \end{pmatrix}, 
  \begin{pmatrix}
  2 \\
  6 \\
  2 
  \end{pmatrix}, 
  \begin{pmatrix}
  1 \\
  3 \\
  5 
  \end{pmatrix}
  \]
- To find the vectors (b1, b2, b3) in the column space, solve the equation \(A \cdot x = b\) for consistency by column operations or row reduction.
- For row combinations giving zero, solve the homogenous system for rows.

**(b) Matrix \( A \) Analysis:**
- Column vectors:
  \[
  \begin{pmatrix}
  1 \\
  1 \\
  2 
  \end{pmatrix}, 
  \begin{pmatrix}
  1 \\
  2 \\
  4 
  \end{pmatrix}, 
  \begin
Transcribed Image Text:**Question 8: Identifying Vectors in the Column Space and Row Combinations to Zero** Given the matrices below: **(a) Matrix \( A \)** \[ A = \begin{bmatrix} 1 & 2 & 1 \\ 2 & 6 & 3 \\ 0 & 2 & 5 \end{bmatrix} \] **(b) Matrix \( A \)** \[ A = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 2 & 4 \\ 2 & 4 & 8 \end{bmatrix} \] **Tasks:** 1. Determine which vectors \((b_1, b_2, b_3)\) are in the column space of \(A\). 2. Identify which combinations of the rows of \(A\) give zero. **Explanation:** - **Column Space**: The column space of a matrix \(A\) is the set of all possible linear combinations of its column vectors. - **Row Combinations**: Finding row combinations that result in zero involves determining the linear dependence among the rows, often achieved through row reduction or examining the null space. For each matrix: **(a) Matrix \( A \) Analysis:** - Column vectors: \[ \begin{pmatrix} 1 \\ 2 \\ 0 \end{pmatrix}, \begin{pmatrix} 2 \\ 6 \\ 2 \end{pmatrix}, \begin{pmatrix} 1 \\ 3 \\ 5 \end{pmatrix} \] - To find the vectors (b1, b2, b3) in the column space, solve the equation \(A \cdot x = b\) for consistency by column operations or row reduction. - For row combinations giving zero, solve the homogenous system for rows. **(b) Matrix \( A \) Analysis:** - Column vectors: \[ \begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix}, \begin{pmatrix} 1 \\ 2 \\ 4 \end{pmatrix}, \begin
Expert Solution
steps

Step by step

Solved in 4 steps with 3 images

Blurred answer
Similar questions
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,