8 6. Use the Root Test to determine whether Σ k=1 6k² 2k² +4 k converges absolutely or diverges.

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
**Problem 16: Using the Root Test**

**Objective:**
Determine whether the infinite series \(\sum_{k=1}^{\infty} \left( \frac{-6k^2}{2k^2 + 4} \right)^k\) converges absolutely or diverges.

**Explanation:**
To solve this problem, we'll employ the Root Test, which is a method used to determine the convergence or divergence of an infinite series. The Root Test involves taking the k-th root of the absolute value of the k-th term of the series and then examining the limit of that sequence as \(k\) approaches infinity.

**Steps:**
1. Consider the general term of the series \(a_k = \left( \frac{-6k^2}{2k^2 + 4} \right)^k\).
2. Find the absolute value of the general term: \( |a_k| = \left( \left| \frac{-6k^2}{2k^2 + 4} \right| \right)^k = \left( \frac{6k^2}{2k^2 + 4} \right)^k\).
3. Apply the Root Test by considering the limit \( L = \lim_{k \to \infty} \sqrt[k]{|a_k|} \).

**Root Test:**
- If \( L < 1 \), the series converges absolutely.
- If \( L > 1 \) or \( L = \infty \), the series diverges.
- If \( L = 1 \), the Root Test is inconclusive.

Next, we find the limit \( L \):
\[ L = \lim_{k \to \infty} \sqrt[k]{ \left( \frac{6k^2}{2k^2 + 4} \right)^k } \]

Breaking down:
\[ L = \lim_{k \to \infty} \left( \frac{6k^2}{2k^2 + 4} \right) \]

Simplify the fraction inside the limit:
\[ \frac{6k^2}{2k^2 + 4} = \frac{6k^2}{2k^2(1 + \frac{2}{k^2})} = \frac{6k^2}{2k^2 \cdot 1
Transcribed Image Text:**Problem 16: Using the Root Test** **Objective:** Determine whether the infinite series \(\sum_{k=1}^{\infty} \left( \frac{-6k^2}{2k^2 + 4} \right)^k\) converges absolutely or diverges. **Explanation:** To solve this problem, we'll employ the Root Test, which is a method used to determine the convergence or divergence of an infinite series. The Root Test involves taking the k-th root of the absolute value of the k-th term of the series and then examining the limit of that sequence as \(k\) approaches infinity. **Steps:** 1. Consider the general term of the series \(a_k = \left( \frac{-6k^2}{2k^2 + 4} \right)^k\). 2. Find the absolute value of the general term: \( |a_k| = \left( \left| \frac{-6k^2}{2k^2 + 4} \right| \right)^k = \left( \frac{6k^2}{2k^2 + 4} \right)^k\). 3. Apply the Root Test by considering the limit \( L = \lim_{k \to \infty} \sqrt[k]{|a_k|} \). **Root Test:** - If \( L < 1 \), the series converges absolutely. - If \( L > 1 \) or \( L = \infty \), the series diverges. - If \( L = 1 \), the Root Test is inconclusive. Next, we find the limit \( L \): \[ L = \lim_{k \to \infty} \sqrt[k]{ \left( \frac{6k^2}{2k^2 + 4} \right)^k } \] Breaking down: \[ L = \lim_{k \to \infty} \left( \frac{6k^2}{2k^2 + 4} \right) \] Simplify the fraction inside the limit: \[ \frac{6k^2}{2k^2 + 4} = \frac{6k^2}{2k^2(1 + \frac{2}{k^2})} = \frac{6k^2}{2k^2 \cdot 1
Expert Solution
steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,