Calculus: Early Transcendentals
8th Edition
ISBN:9781285741550
Author:James Stewart
Publisher:James Stewart
Chapter1: Functions And Models
Section: Chapter Questions
Problem 1RCC: (a) What is a function? What are its domain and range? (b) What is the graph of a function? (c) How...
Related questions
Question
![## Algebra Long Division
### Question 4
Evaluate the integral:
\[
\int \frac{8}{\sqrt{12 - x^2 - 4x}} \, dx
\]
Choose the correct option:
A) \( 16 \sqrt{12 - x^2 - 4x} + C \)
B) \( 2 \sin^{-1} \left( \frac{x + 2}{4} \right) + C \)
C) \( 8 \sin^{-1} \left( \frac{x - 2}{4} \right) + C \)
D) \( 8 \sin^{-1} \left( \frac{x + 2}{4} \right) + C \)
**Note:** Each option includes an arbitrary constant of integration \( C \).](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F41c2bfbb-2f4f-4281-b52e-d43682cff354%2F7ed75dd7-2a0e-49f6-a376-23d0b7355dc3%2F06q04kj_processed.png&w=3840&q=75)
Transcribed Image Text:## Algebra Long Division
### Question 4
Evaluate the integral:
\[
\int \frac{8}{\sqrt{12 - x^2 - 4x}} \, dx
\]
Choose the correct option:
A) \( 16 \sqrt{12 - x^2 - 4x} + C \)
B) \( 2 \sin^{-1} \left( \frac{x + 2}{4} \right) + C \)
C) \( 8 \sin^{-1} \left( \frac{x - 2}{4} \right) + C \)
D) \( 8 \sin^{-1} \left( \frac{x + 2}{4} \right) + C \)
**Note:** Each option includes an arbitrary constant of integration \( C \).
![The image presents a calculus problem involving an integral, specifically:
\[
\int \frac{8}{\sqrt{12 - x^2 - 4x}} \, dx =
\]
Four potential answers are provided, labeled A through D:
**A)** \( 16\sqrt{12 - x^2 - 4x} + C \)
**B)** \( 2 \sin^{-1} \left( \frac{x+2}{4} \right) + C \)
**C)** \( 8 \sin^{-1} \left( \frac{x-2}{4} \right) + C \)
**D)** \( 8 \sin^{-1} \left( \frac{x+2}{4} \right) + C \)
Where \( C \) represents the constant of integration.
The problem is to evaluate the integral and determine which of the given options is correct. Each option reflects a different expression based on the antiderivatives of the given function under the integral.](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F41c2bfbb-2f4f-4281-b52e-d43682cff354%2F7ed75dd7-2a0e-49f6-a376-23d0b7355dc3%2F2ccqf3f_processed.png&w=3840&q=75)
Transcribed Image Text:The image presents a calculus problem involving an integral, specifically:
\[
\int \frac{8}{\sqrt{12 - x^2 - 4x}} \, dx =
\]
Four potential answers are provided, labeled A through D:
**A)** \( 16\sqrt{12 - x^2 - 4x} + C \)
**B)** \( 2 \sin^{-1} \left( \frac{x+2}{4} \right) + C \)
**C)** \( 8 \sin^{-1} \left( \frac{x-2}{4} \right) + C \)
**D)** \( 8 \sin^{-1} \left( \frac{x+2}{4} \right) + C \)
Where \( C \) represents the constant of integration.
The problem is to evaluate the integral and determine which of the given options is correct. Each option reflects a different expression based on the antiderivatives of the given function under the integral.
Expert Solution

This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 2 steps with 2 images

Recommended textbooks for you

Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning

Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON

Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON

Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning

Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON

Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON

Calculus: Early Transcendentals
Calculus
ISBN:
9781319050740
Author:
Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:
W. H. Freeman


Calculus: Early Transcendental Functions
Calculus
ISBN:
9781337552516
Author:
Ron Larson, Bruce H. Edwards
Publisher:
Cengage Learning