7y" +46y" 175y' - 1150y = 4e t y(0) = 0 y (0) 0 y" (0) = 1 into an algebraic equation by taking the Laplace transform of each side. Use Y for the Laplace transform of y, (not Y(s)). Transform the differential equation Therefore Y = = 15+ Taking the inverse Laplace transform we get y = 45+ 546
7y" +46y" 175y' - 1150y = 4e t y(0) = 0 y (0) 0 y" (0) = 1 into an algebraic equation by taking the Laplace transform of each side. Use Y for the Laplace transform of y, (not Y(s)). Transform the differential equation Therefore Y = = 15+ Taking the inverse Laplace transform we get y = 45+ 546
Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Related questions
Question
![7y" +46y" 175y' - 1150y = 4e t
y(0) = 0
y (0) = 0
y" (0) = 1
into an algebraic equation by taking the Laplace transform of each side. Use Y for the Laplace transform of y, (not Y(s)).
Transform the differential equation
Therefore
Y =
=
15+
Taking the inverse Laplace transform we get
y =
35+
316
4](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F7257e379-412a-45af-8489-b06fafcd19b9%2F69f7e3fc-4106-4811-91ed-20d4e7d8e1d5%2F6g3o73j_processed.jpeg&w=3840&q=75)
Transcribed Image Text:7y" +46y" 175y' - 1150y = 4e t
y(0) = 0
y (0) = 0
y" (0) = 1
into an algebraic equation by taking the Laplace transform of each side. Use Y for the Laplace transform of y, (not Y(s)).
Transform the differential equation
Therefore
Y =
=
15+
Taking the inverse Laplace transform we get
y =
35+
316
4
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 3 steps with 3 images
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Recommended textbooks for you
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Mathematics For Machine Technology](https://www.bartleby.com/isbn_cover_images/9781337798310/9781337798310_smallCoverImage.jpg)
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
![Basic Technical Mathematics](https://www.bartleby.com/isbn_cover_images/9780134437705/9780134437705_smallCoverImage.gif)
![Topology](https://www.bartleby.com/isbn_cover_images/9780134689517/9780134689517_smallCoverImage.gif)