78 E The primary rainbow described in Problem 77 is the type commonly seen in regions where rainbows appear. It is pro- duced by light reflecting once inside the drops. Rarer is the sec- ondary rainbow described in Module 33-5, produced by light reflecting twice inside the drops (Fig. 33-68a). (a) Show that the angular deviation of light entering and then leaving a spherical water drop is Odev = (180°)k + 20, – 2(k + 1)8,, where k is the number of internal reflections. Using the procedure of Problem 77, find the angle of minimum deviation for (b) red light and (c) blue light in a secondary rainbow. (d) What is the angular width of that rainbow (Fig. 33-21d)? The tertiary rainbow depends on three internal reflections (Fig. 33-68b). It probably occurs but, as noted in Module 33-5, cannot be seen with the eye because it is very faint and lies in the bright sky surrounding the Sun. What is the angle of minimum de- viation for (e) the red light and (f) the blue light in this rainbow? (g) What is the rainbow's angular width? (a) (6)
78 E The primary rainbow described in Problem 77 is the type commonly seen in regions where rainbows appear. It is pro- duced by light reflecting once inside the drops. Rarer is the sec- ondary rainbow described in Module 33-5, produced by light reflecting twice inside the drops (Fig. 33-68a). (a) Show that the angular deviation of light entering and then leaving a spherical water drop is Odev = (180°)k + 20, – 2(k + 1)8,, where k is the number of internal reflections. Using the procedure of Problem 77, find the angle of minimum deviation for (b) red light and (c) blue light in a secondary rainbow. (d) What is the angular width of that rainbow (Fig. 33-21d)? The tertiary rainbow depends on three internal reflections (Fig. 33-68b). It probably occurs but, as noted in Module 33-5, cannot be seen with the eye because it is very faint and lies in the bright sky surrounding the Sun. What is the angle of minimum de- viation for (e) the red light and (f) the blue light in this rainbow? (g) What is the rainbow's angular width? (a) (6)
College Physics
11th Edition
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Raymond A. Serway, Chris Vuille
Chapter1: Units, Trigonometry. And Vectors
Section: Chapter Questions
Problem 1CQ: Estimate the order of magnitude of the length, in meters, of each of the following; (a) a mouse, (b)...
Related questions
Question

Transcribed Image Text:78 E The primary rainbow described in Problem 77 is the
type commonly seen in regions where rainbows appear. It is pro-
duced by light reflecting once inside the drops. Rarer is the sec-
ondary rainbow described in Module 33-5, produced by light
reflecting twice inside the drops (Fig. 33-68a). (a) Show that the
angular deviation of light entering and then leaving a spherical
water drop is
Odev = (180°)k + 20, – 2(k + 1)8,,
where k is the number of internal reflections. Using the procedure
of Problem 77, find the angle of minimum deviation for (b) red
light and (c) blue light in a secondary rainbow. (d) What is the
angular width of that rainbow (Fig. 33-21d)?
The tertiary rainbow depends on three internal reflections
(Fig. 33-68b). It probably occurs but, as noted in Module 33-5,
cannot be seen with the eye because it is very faint and lies in the
bright sky surrounding the Sun. What is the angle of minimum de-
viation for (e) the red light and (f) the blue light in this rainbow?
(g) What is the rainbow's angular width?
(a)
(6)
Expert Solution

This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 5 steps with 6 images

Recommended textbooks for you

College Physics
Physics
ISBN:
9781305952300
Author:
Raymond A. Serway, Chris Vuille
Publisher:
Cengage Learning

University Physics (14th Edition)
Physics
ISBN:
9780133969290
Author:
Hugh D. Young, Roger A. Freedman
Publisher:
PEARSON

Introduction To Quantum Mechanics
Physics
ISBN:
9781107189638
Author:
Griffiths, David J., Schroeter, Darrell F.
Publisher:
Cambridge University Press

College Physics
Physics
ISBN:
9781305952300
Author:
Raymond A. Serway, Chris Vuille
Publisher:
Cengage Learning

University Physics (14th Edition)
Physics
ISBN:
9780133969290
Author:
Hugh D. Young, Roger A. Freedman
Publisher:
PEARSON

Introduction To Quantum Mechanics
Physics
ISBN:
9781107189638
Author:
Griffiths, David J., Schroeter, Darrell F.
Publisher:
Cambridge University Press

Physics for Scientists and Engineers
Physics
ISBN:
9781337553278
Author:
Raymond A. Serway, John W. Jewett
Publisher:
Cengage Learning

Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:
9780321820464
Author:
Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:
Addison-Wesley

College Physics: A Strategic Approach (4th Editio…
Physics
ISBN:
9780134609034
Author:
Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:
PEARSON