7.A bakery uses 2000 raisins to make 100 loaves of bread. Let X be the number of raisins of each loaf. X follows a binomial distribution with n=2000, p 1/100. Using the central limit theorem.(normal approximation} a) find the probabilities: P(20 28) 1:d .. b) find the probability that average number of raisins in 25 randomly chosen loaves exceeds 28. c) Why is it possible to apply central limit theorem to this problem?

A First Course in Probability (10th Edition)
10th Edition
ISBN:9780134753119
Author:Sheldon Ross
Publisher:Sheldon Ross
Chapter1: Combinatorial Analysis
Section: Chapter Questions
Problem 1.1P: a. How many different 7-place license plates are possible if the first 2 places are for letters and...
icon
Related questions
Question
7.A bakery uses 2000 raisins to make 100 loaves of bread. Let X be the number of
raisins of each loaf. X follows a binomial distribution with n=2000, p 1/100.
Using the central limit theorem.(normal approximation}
a) find the probabilities: P(20 <X <28 ), P (X > 28)
P:4
b) find the probability that average number of raisins in 25 randomly chosen
loaves exceeds 28.
c) Why is it possible to apply central limit theorem to this problem?
Transcribed Image Text:7.A bakery uses 2000 raisins to make 100 loaves of bread. Let X be the number of raisins of each loaf. X follows a binomial distribution with n=2000, p 1/100. Using the central limit theorem.(normal approximation} a) find the probabilities: P(20 <X <28 ), P (X > 28) P:4 b) find the probability that average number of raisins in 25 randomly chosen loaves exceeds 28. c) Why is it possible to apply central limit theorem to this problem?
Expert Solution
steps

Step by step

Solved in 4 steps

Blurred answer
Recommended textbooks for you
A First Course in Probability (10th Edition)
A First Course in Probability (10th Edition)
Probability
ISBN:
9780134753119
Author:
Sheldon Ross
Publisher:
PEARSON
A First Course in Probability
A First Course in Probability
Probability
ISBN:
9780321794772
Author:
Sheldon Ross
Publisher:
PEARSON