7.3 Isomorphisms of Interval-Valued Fuzzy Graphs In this section, we consider various types of (weak) isomorphisms of interval-valued fuzzy graphs. Definition 7.3.1 Let G₁ = (A₁, B₁) and G₂ = (A2, B₂) be two interval-valued fuzzy graphs. A homomorphism f: G₁ G₂ is a mapping f: V₁ → V₂ such that for all x₁ € V₁, X1y1 € E1, (i) μÃ, (x₁) ≤μÃ₂ (f (x₁)), μ, (x₁) ≤ μ₂ (f(x₁)), + (ii) μg, (x1Y1) ≤ PB₂ (f(x₁) ƒ (y₁)), µg, (x₁y₁) ≤ ₂ (f(x₁) f (y)). A bijective homomorphism with the property (iii) μA, (x₁) = μÃ₂ (f(x₁)), μ₁ (x₁) = μ₂ (f(x₁)) is called a weak isomorphism and a weak co-isomorphism if = (iv) B₁ (x1y₁) = PB₂ (f(x₁) f (y1₁)), P, (X1Y₁) X1, y1 € V₁. A bijective mapping f: G₁ G₂ satisfying (iii) and (iv) is called an isomor- phism. (f(x₁) f(y)) for all
7.3 Isomorphisms of Interval-Valued Fuzzy Graphs In this section, we consider various types of (weak) isomorphisms of interval-valued fuzzy graphs. Definition 7.3.1 Let G₁ = (A₁, B₁) and G₂ = (A2, B₂) be two interval-valued fuzzy graphs. A homomorphism f: G₁ G₂ is a mapping f: V₁ → V₂ such that for all x₁ € V₁, X1y1 € E1, (i) μÃ, (x₁) ≤μÃ₂ (f (x₁)), μ, (x₁) ≤ μ₂ (f(x₁)), + (ii) μg, (x1Y1) ≤ PB₂ (f(x₁) ƒ (y₁)), µg, (x₁y₁) ≤ ₂ (f(x₁) f (y)). A bijective homomorphism with the property (iii) μA, (x₁) = μÃ₂ (f(x₁)), μ₁ (x₁) = μ₂ (f(x₁)) is called a weak isomorphism and a weak co-isomorphism if = (iv) B₁ (x1y₁) = PB₂ (f(x₁) f (y1₁)), P, (X1Y₁) X1, y1 € V₁. A bijective mapping f: G₁ G₂ satisfying (iii) and (iv) is called an isomor- phism. (f(x₁) f(y)) for all
Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Related questions
Question
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 3 steps with 3 images
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,