7.1.8. Explain why the eigenvalues of A*A and AA* are real and nonneg- ative for every A Cmxn. Hint: Consider ||Ax|| / ||x||2. When are the eigenvalues of A*A and AA* strictly positive? Book solution: If (A, x) is an eigenpair for A*A, then ||Ax|| / ||x||² = x* A*Ax/x*x = \ is real and nonnegative. Furthermore, λ> 0 if and only if A*A is nonsingular or, equivalently, n = rank (A*A) = rank (A). Similar arguments apply to AA*. Please explain the book solution.
7.1.8. Explain why the eigenvalues of A*A and AA* are real and nonneg- ative for every A Cmxn. Hint: Consider ||Ax|| / ||x||2. When are the eigenvalues of A*A and AA* strictly positive? Book solution: If (A, x) is an eigenpair for A*A, then ||Ax|| / ||x||² = x* A*Ax/x*x = \ is real and nonnegative. Furthermore, λ> 0 if and only if A*A is nonsingular or, equivalently, n = rank (A*A) = rank (A). Similar arguments apply to AA*. Please explain the book solution.
Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Related questions
Question
![7.1.8. Explain why the eigenvalues of A*A and AA* are real and nonneg-
ative for every A € Cmxn. Hint: Consider || Ax|| / ||x||2. When are
the eigenvalues of A*A and AA* strictly positive?
Book solution:
If (x,x) is an eigenpair for A*A, then ||Ax||²2 / ||x||2²2 = x*A*Ax/x*x = \ is
real and nonnegative. Furthermore, > > 0 if and only if A*A is nonsingular or,
equivalently, n = rank (A* A) = rank (A). Similar arguments apply to AA*.
Please explain the book solution.](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F98b6e310-08ba-4e1d-a9bc-704b45d2ce6c%2F8e7e9a51-5291-46dc-892e-94f0b0d64c58%2F3x3xtv_processed.png&w=3840&q=75)
Transcribed Image Text:7.1.8. Explain why the eigenvalues of A*A and AA* are real and nonneg-
ative for every A € Cmxn. Hint: Consider || Ax|| / ||x||2. When are
the eigenvalues of A*A and AA* strictly positive?
Book solution:
If (x,x) is an eigenpair for A*A, then ||Ax||²2 / ||x||2²2 = x*A*Ax/x*x = \ is
real and nonnegative. Furthermore, > > 0 if and only if A*A is nonsingular or,
equivalently, n = rank (A* A) = rank (A). Similar arguments apply to AA*.
Please explain the book solution.
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 2 steps with 2 images
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Recommended textbooks for you
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Mathematics For Machine Technology](https://www.bartleby.com/isbn_cover_images/9781337798310/9781337798310_smallCoverImage.jpg)
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
![Basic Technical Mathematics](https://www.bartleby.com/isbn_cover_images/9780134437705/9780134437705_smallCoverImage.gif)
![Topology](https://www.bartleby.com/isbn_cover_images/9780134689517/9780134689517_smallCoverImage.gif)