7. xy + y = x², x > 0 8.
Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Related questions
Question
Number 7 3.4 show all work
![ph the solution to Example 5 by typing and ent
plot (exp (-x^2/2) *int (exp(t^2/2),t=0..x)+exp(-x^2/2),x=
This graph appears in Figure 3.8.
1.4E
1.2-
0.8 -
0.6-
0.4
0.2
2
3
Figure 3.8
vative
EXERCISES 3.4
dy
In Exercises 1–12, determine the integrating factor and
solve the differential equation.
1. y + y/x? = 0
11.
+e'y = e'
dt
dr
2. y' = y/x - 2, x > 0
12.
=r tan 0 + sin 0,0 < 0 < x/
de
3. y' – 2xy = x
4. y' = 4y +2x
In Exercises 13–18, solve the initial v
5. y = 1+
y
-, x >0
1+2x
13. y' +4y = 2, y(1) = 2
14. 2xy' + y = 1, y(4) = 0
y
2xy
6. y = x² .
1+x2
15. y + = 2, y(0) = 2
x+1
8. xy+y = x2, x < 0
16. y' + 2xy = 1, y(0) = –1
17. y' = cos 2x – y/x, y(1/2) = 0
7. xy + y = x², x > 0
9. (1+ xy) dx – x² dy = 0, x < 0
10. (1 + xy) dx – x² dy = 0, x > 0
18. x(x +1)y' 2 + y, y(1) = 0](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2Fee22cf2f-b974-4b00-a3cf-09b388e7d65d%2F49e2fbf6-8192-40d8-8ec9-00cb62d80904%2Fxucskc_processed.jpeg&w=3840&q=75)
Transcribed Image Text:ph the solution to Example 5 by typing and ent
plot (exp (-x^2/2) *int (exp(t^2/2),t=0..x)+exp(-x^2/2),x=
This graph appears in Figure 3.8.
1.4E
1.2-
0.8 -
0.6-
0.4
0.2
2
3
Figure 3.8
vative
EXERCISES 3.4
dy
In Exercises 1–12, determine the integrating factor and
solve the differential equation.
1. y + y/x? = 0
11.
+e'y = e'
dt
dr
2. y' = y/x - 2, x > 0
12.
=r tan 0 + sin 0,0 < 0 < x/
de
3. y' – 2xy = x
4. y' = 4y +2x
In Exercises 13–18, solve the initial v
5. y = 1+
y
-, x >0
1+2x
13. y' +4y = 2, y(1) = 2
14. 2xy' + y = 1, y(4) = 0
y
2xy
6. y = x² .
1+x2
15. y + = 2, y(0) = 2
x+1
8. xy+y = x2, x < 0
16. y' + 2xy = 1, y(0) = –1
17. y' = cos 2x – y/x, y(1/2) = 0
7. xy + y = x², x > 0
9. (1+ xy) dx – x² dy = 0, x < 0
10. (1 + xy) dx – x² dy = 0, x > 0
18. x(x +1)y' 2 + y, y(1) = 0
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 3 steps with 2 images
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Recommended textbooks for you
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Mathematics For Machine Technology](https://www.bartleby.com/isbn_cover_images/9781337798310/9781337798310_smallCoverImage.jpg)
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
![Basic Technical Mathematics](https://www.bartleby.com/isbn_cover_images/9780134437705/9780134437705_smallCoverImage.gif)
![Topology](https://www.bartleby.com/isbn_cover_images/9780134689517/9780134689517_smallCoverImage.gif)