7. Sketch the graph of a function f that satisfies the given conditions: f(0) = 3; f(-2) = f(2) = -4 f'(-2) = f'(2) = 0; f'(0) is undefined f'(x) > 0 i- 2 < x< 0 and x> 2 f'(x) < 0 if x < -2 or 0 < x < 2
7. Sketch the graph of a function f that satisfies the given conditions: f(0) = 3; f(-2) = f(2) = -4 f'(-2) = f'(2) = 0; f'(0) is undefined f'(x) > 0 i- 2 < x< 0 and x> 2 f'(x) < 0 if x < -2 or 0 < x < 2
Calculus: Early Transcendentals
8th Edition
ISBN:9781285741550
Author:James Stewart
Publisher:James Stewart
Chapter1: Functions And Models
Section: Chapter Questions
Problem 1RCC: (a) What is a function? What are its domain and range? (b) What is the graph of a function? (c) How...
Related questions
Question
Please solve and show all work, thank you!!
![**Instructions for Sketching a Function Graph**
**Objective:**
Sketch the graph of a function \( f \) that satisfies the given conditions.
**Conditions:**
1. \( f(0) = 3 \); \( f(-2) = f(2) = -4 \)
2. \( f'(-2) = f'(2) = 0 \); \( f'(0) \) is undefined
3. \( f'(x) > 0 \) if \(-2 < x < 0\) and \(x > 2\)
4. \( f'(x) < 0 \) if \(x < -2\) or \(0 < x < 2\)
**Graph Explanation:**
- **Axes:** The diagram includes a Cartesian plane with evenly spaced grid lines marking the x and y axes.
- **Key Points:** Plot the points \((0, 3)\), \((-2, -4)\), and \((2, -4)\).
- **Derivative Info:**
- At \(x = -2\) and \(x = 2\), the slope is zero, indicating local maxima or minima.
- At \(x = 0\), the slope is undefined, suggesting a possible cusp or vertical tangent.
- **Intervals of Increase/Decrease:**
- Increasing: \(-2 < x < 0\) and \(x > 2\)
- Decreasing: \(x < -2\) and \(0 < x < 2\)
**Instructions for Sketching:**
- Begin the graph at the point \((-2, -4)\), increasing until it reaches \(x=0\).
- Decrease towards the point \((2, -4)\).
- Ensure a horizontal tangent at \(x = -2\) and \(x = 2\).
- Mark any sharp turns or cusps at \(x = 0\) as the derivative is undefined.](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F97689b57-22f1-451b-aeb3-e5f10664de40%2Fe3b4a035-2f37-44ab-9cb3-779b1eb7b442%2Fprar7n_processed.jpeg&w=3840&q=75)
Transcribed Image Text:**Instructions for Sketching a Function Graph**
**Objective:**
Sketch the graph of a function \( f \) that satisfies the given conditions.
**Conditions:**
1. \( f(0) = 3 \); \( f(-2) = f(2) = -4 \)
2. \( f'(-2) = f'(2) = 0 \); \( f'(0) \) is undefined
3. \( f'(x) > 0 \) if \(-2 < x < 0\) and \(x > 2\)
4. \( f'(x) < 0 \) if \(x < -2\) or \(0 < x < 2\)
**Graph Explanation:**
- **Axes:** The diagram includes a Cartesian plane with evenly spaced grid lines marking the x and y axes.
- **Key Points:** Plot the points \((0, 3)\), \((-2, -4)\), and \((2, -4)\).
- **Derivative Info:**
- At \(x = -2\) and \(x = 2\), the slope is zero, indicating local maxima or minima.
- At \(x = 0\), the slope is undefined, suggesting a possible cusp or vertical tangent.
- **Intervals of Increase/Decrease:**
- Increasing: \(-2 < x < 0\) and \(x > 2\)
- Decreasing: \(x < -2\) and \(0 < x < 2\)
**Instructions for Sketching:**
- Begin the graph at the point \((-2, -4)\), increasing until it reaches \(x=0\).
- Decrease towards the point \((2, -4)\).
- Ensure a horizontal tangent at \(x = -2\) and \(x = 2\).
- Mark any sharp turns or cusps at \(x = 0\) as the derivative is undefined.
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 2 steps with 2 images
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Recommended textbooks for you
![Calculus: Early Transcendentals](https://www.bartleby.com/isbn_cover_images/9781285741550/9781285741550_smallCoverImage.gif)
Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning
![Thomas' Calculus (14th Edition)](https://www.bartleby.com/isbn_cover_images/9780134438986/9780134438986_smallCoverImage.gif)
Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON
![Calculus: Early Transcendentals (3rd Edition)](https://www.bartleby.com/isbn_cover_images/9780134763644/9780134763644_smallCoverImage.gif)
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON
![Calculus: Early Transcendentals](https://www.bartleby.com/isbn_cover_images/9781285741550/9781285741550_smallCoverImage.gif)
Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning
![Thomas' Calculus (14th Edition)](https://www.bartleby.com/isbn_cover_images/9780134438986/9780134438986_smallCoverImage.gif)
Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON
![Calculus: Early Transcendentals (3rd Edition)](https://www.bartleby.com/isbn_cover_images/9780134763644/9780134763644_smallCoverImage.gif)
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON
![Calculus: Early Transcendentals](https://www.bartleby.com/isbn_cover_images/9781319050740/9781319050740_smallCoverImage.gif)
Calculus: Early Transcendentals
Calculus
ISBN:
9781319050740
Author:
Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:
W. H. Freeman
![Precalculus](https://www.bartleby.com/isbn_cover_images/9780135189405/9780135189405_smallCoverImage.gif)
![Calculus: Early Transcendental Functions](https://www.bartleby.com/isbn_cover_images/9781337552516/9781337552516_smallCoverImage.gif)
Calculus: Early Transcendental Functions
Calculus
ISBN:
9781337552516
Author:
Ron Larson, Bruce H. Edwards
Publisher:
Cengage Learning