7. Show that {T,O}is a group.

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Topic Video
Question

please answer number 7. If you can please answer as much as you can. 

Let I be the set of equivalence classes as defined as above. Define O as follows: if A and B are
equivalence classes in T, A O B is the equivalence class of the sum of an element from A and an
element from B. For example, using the A and B from #6: (2,5) + (4,2) = (6,7), so, A OB is the
equivalence class of (6,7): {(0,1), (1,2), (2,3), ...} Đis well defined because as we showed in #6, the
result of the operation does not depend on which representatives of the equivalence classes we choose.
7. Show that {T,O}is a group.
8. Match the elements in T with the integers and show that {T,O} has the same structure as the
integers with addition.
Multiplication on the number pairs is defined as follows: (a, b) · (c, d) = (ad + bc, ac + bd).O in T is
defined in a similar way to O above from multiplication of number pairs.
9. Show that the definition of 8 makes sense.
10. Perhaps surprisingly, {T,8} has the same structure as the integers with multiplication. Check
that on some examples. Why does this work?
Transcribed Image Text:Let I be the set of equivalence classes as defined as above. Define O as follows: if A and B are equivalence classes in T, A O B is the equivalence class of the sum of an element from A and an element from B. For example, using the A and B from #6: (2,5) + (4,2) = (6,7), so, A OB is the equivalence class of (6,7): {(0,1), (1,2), (2,3), ...} Đis well defined because as we showed in #6, the result of the operation does not depend on which representatives of the equivalence classes we choose. 7. Show that {T,O}is a group. 8. Match the elements in T with the integers and show that {T,O} has the same structure as the integers with addition. Multiplication on the number pairs is defined as follows: (a, b) · (c, d) = (ad + bc, ac + bd).O in T is defined in a similar way to O above from multiplication of number pairs. 9. Show that the definition of 8 makes sense. 10. Perhaps surprisingly, {T,8} has the same structure as the integers with multiplication. Check that on some examples. Why does this work?
Expert Solution
steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Knowledge Booster
Algebraic Operations
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, advanced-math and related others by exploring similar questions and additional content below.
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,