7. Prove the following trigonometric identity: secx-2sin x = (sin x − cosx)2 cosx

Trigonometry (11th Edition)
11th Edition
ISBN:9780134217437
Author:Margaret L. Lial, John Hornsby, David I. Schneider, Callie Daniels
Publisher:Margaret L. Lial, John Hornsby, David I. Schneider, Callie Daniels
Chapter1: Trigonometric Functions
Section: Chapter Questions
Problem 1RE: 1. Give the measures of the complement and the supplement of an angle measuring 35°.
icon
Related questions
Question
### Prove the Following Trigonometric Identity

**Problem Statement:**

Prove the following trigonometric identity:
\[ \sec x - 2 \sin x = \frac{(\sin x - \cos x)^2}{\cos x} \]

**Detailed Explanation:**

To prove this identity, let's start by expressing \(\sec x\) in terms of \(\cos x\).

1. Remember that \(\sec x = \frac{1}{\cos x}\).
2. Substitute \(\sec x\) in the given identity:
   \[ \frac{1}{\cos x} - 2 \sin x = \frac{(\sin x - \cos x)^2}{\cos x} \]

**Next Steps:**

1. Combine the terms on the left-hand side over a common denominator:
   \[ \frac{1 - 2 \sin x \cos x}{\cos x} \]

2. Expand the numerator on the right-hand side:
   \[ \frac{(\sin x - \cos x)^2}{\cos x} = \frac{\sin^2 x - 2 \sin x \cos x + \cos^2 x}{\cos x} \]

3. Use the Pythagorean identity \(\sin^2 x + \cos^2 x = 1\):
   \[ \frac{1 - 2 \sin x \cos x}{\cos x} = \frac{1 - 2 \sin x \cos x + \cos^2 x + \sin^2 x - \cos^2 x}{\cos x} \]

Since \(1 - 2 \sin x \cos x\) equals both sides, the identity is verified.

This confirms the left-hand side equals the right-hand side, thus proving the given trigonometric identity.
Transcribed Image Text:### Prove the Following Trigonometric Identity **Problem Statement:** Prove the following trigonometric identity: \[ \sec x - 2 \sin x = \frac{(\sin x - \cos x)^2}{\cos x} \] **Detailed Explanation:** To prove this identity, let's start by expressing \(\sec x\) in terms of \(\cos x\). 1. Remember that \(\sec x = \frac{1}{\cos x}\). 2. Substitute \(\sec x\) in the given identity: \[ \frac{1}{\cos x} - 2 \sin x = \frac{(\sin x - \cos x)^2}{\cos x} \] **Next Steps:** 1. Combine the terms on the left-hand side over a common denominator: \[ \frac{1 - 2 \sin x \cos x}{\cos x} \] 2. Expand the numerator on the right-hand side: \[ \frac{(\sin x - \cos x)^2}{\cos x} = \frac{\sin^2 x - 2 \sin x \cos x + \cos^2 x}{\cos x} \] 3. Use the Pythagorean identity \(\sin^2 x + \cos^2 x = 1\): \[ \frac{1 - 2 \sin x \cos x}{\cos x} = \frac{1 - 2 \sin x \cos x + \cos^2 x + \sin^2 x - \cos^2 x}{\cos x} \] Since \(1 - 2 \sin x \cos x\) equals both sides, the identity is verified. This confirms the left-hand side equals the right-hand side, thus proving the given trigonometric identity.
Expert Solution
steps

Step by step

Solved in 3 steps with 11 images

Blurred answer
Recommended textbooks for you
Trigonometry (11th Edition)
Trigonometry (11th Edition)
Trigonometry
ISBN:
9780134217437
Author:
Margaret L. Lial, John Hornsby, David I. Schneider, Callie Daniels
Publisher:
PEARSON
Trigonometry (MindTap Course List)
Trigonometry (MindTap Course List)
Trigonometry
ISBN:
9781305652224
Author:
Charles P. McKeague, Mark D. Turner
Publisher:
Cengage Learning
Algebra and Trigonometry
Algebra and Trigonometry
Trigonometry
ISBN:
9781938168376
Author:
Jay Abramson
Publisher:
OpenStax
Trigonometry (MindTap Course List)
Trigonometry (MindTap Course List)
Trigonometry
ISBN:
9781337278461
Author:
Ron Larson
Publisher:
Cengage Learning