7. Let fn [a, b] → R be Riemann integrable and suppose that fn → funiformly on [a, b]. (a) Prove that f is Riemann integrable. Hint: Let € > 0 and let P be any partition of [a.b]. Use the definition of the uniform convergence of fn to f to show that there exists an N € N so that S(f, P) ≤ S(ƒN, P) + €. (b) Prove that lim m. [*J₁ (2) "fu(2)de = $* f(2) dz. fn dx n→∞
7. Let fn [a, b] → R be Riemann integrable and suppose that fn → funiformly on [a, b]. (a) Prove that f is Riemann integrable. Hint: Let € > 0 and let P be any partition of [a.b]. Use the definition of the uniform convergence of fn to f to show that there exists an N € N so that S(f, P) ≤ S(ƒN, P) + €. (b) Prove that lim m. [*J₁ (2) "fu(2)de = $* f(2) dz. fn dx n→∞
Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Related questions
Question
B pls
![7. Let \( f_n : [a, b] \to \mathbb{R} \) be Riemann integrable and suppose that \( f_n \to f \) uniformly on \([a, b]\).
(a) Prove that \( f \) is Riemann integrable. **Hint:** Let \(\epsilon > 0\) and let \( P \) be any partition of \([a,b]\). Use the definition of the uniform convergence of \( f_n \) to \( f \) to show that there exists an \( N \in \mathbb{N} \) so that \( S(f, P) \leq S(f_N, P) + \epsilon \).
(b) Prove that
\[
\lim_{n \to \infty} \int_a^b f_n(x) \, dx = \int_a^b f(x) \, dx.
\]](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F77cfc5ac-076f-4cb7-b69f-6b7f1cfee42f%2Fd22ae42b-4230-4b9a-8c3a-9c6a15a57acd%2Fk0szy5_processed.png&w=3840&q=75)
Transcribed Image Text:7. Let \( f_n : [a, b] \to \mathbb{R} \) be Riemann integrable and suppose that \( f_n \to f \) uniformly on \([a, b]\).
(a) Prove that \( f \) is Riemann integrable. **Hint:** Let \(\epsilon > 0\) and let \( P \) be any partition of \([a,b]\). Use the definition of the uniform convergence of \( f_n \) to \( f \) to show that there exists an \( N \in \mathbb{N} \) so that \( S(f, P) \leq S(f_N, P) + \epsilon \).
(b) Prove that
\[
\lim_{n \to \infty} \int_a^b f_n(x) \, dx = \int_a^b f(x) \, dx.
\]
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 3 steps with 2 images
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Recommended textbooks for you
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Mathematics For Machine Technology](https://www.bartleby.com/isbn_cover_images/9781337798310/9781337798310_smallCoverImage.jpg)
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
![Basic Technical Mathematics](https://www.bartleby.com/isbn_cover_images/9780134437705/9780134437705_smallCoverImage.gif)
![Topology](https://www.bartleby.com/isbn_cover_images/9780134689517/9780134689517_smallCoverImage.gif)