7. Let C[-7,7] be the vector space of continuous function over [-n, 1] with an inner product 1 (5,9) = = | f(x)g(x) dæ (a) Show that cos(mx) and sin(nx) are orthogonal for any integers m and n.

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question

7

7. Let C[-7, ] be the vector space of continuous function over [–7, 7] with an inner product
1
(5,9) = - | f(x)g(x) d.x
(a) Show that cos(mx) and sin(nx) are orthogonal for any integers m and n.
Transcribed Image Text:7. Let C[-7, ] be the vector space of continuous function over [–7, 7] with an inner product 1 (5,9) = - | f(x)g(x) d.x (a) Show that cos(mx) and sin(nx) are orthogonal for any integers m and n.
(b) Show that cos(mx) and sin(nx) are unit vectors for any integers m and n.
(c) Compute the vector projection of e" onto cos(mx), where m is an integer.
You may find the following identities helpful:
1
sin(mæ) cos(nx) =;( sin(m – n)a + sin(m + n)x)
1
sin(mx) sin(nx) %3D3( )
cos (m — п)х — cos(m + п)x
COS
2
1
cos(mx) cos(пaх) — %3( cos(m — п)х + сos(m + п)х
e
1+ m² ( cos(mx) +m sin(mæ))
cos(mx) o
Transcribed Image Text:(b) Show that cos(mx) and sin(nx) are unit vectors for any integers m and n. (c) Compute the vector projection of e" onto cos(mx), where m is an integer. You may find the following identities helpful: 1 sin(mæ) cos(nx) =;( sin(m – n)a + sin(m + n)x) 1 sin(mx) sin(nx) %3D3( ) cos (m — п)х — cos(m + п)x COS 2 1 cos(mx) cos(пaх) — %3( cos(m — п)х + сos(m + п)х e 1+ m² ( cos(mx) +m sin(mæ)) cos(mx) o
Expert Solution
steps

Step by step

Solved in 5 steps

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,