7. Find the Jacobian of the transformation T(x, y) = (w sin(v²),w cos(v²)). X=w Sin (v?) w = sin (v?) v =W COS (v²). 2v %3D y= w cos (v?) Ym= cos (v?) %3D gu=-W sin (v^). 2v J= (sin (v*)) (-wsin(v3).2v) - (wcos (v}.2v) (cos(v?))

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
I feel like I messed this up somewhere… would someone mind checking my work? Thanks!
7. Find the Jacobian of the transformation T(x,y) = (w sin(v²),w cos(v²)).
X= w sin (v?)
Xw = sin (v?)
Xv=W COS (v?). 2v
y= w cos (v²)
Ym= cos (v?)
yu=-w sin (v")-2v
J= (sin (v?)) (-wsin(u3).2v) - (wcos (v%.2v) (cos(v?)
(Sin(v?))(2vw sin(v*)-(( 2vNcos (ve) Ccos (ve))
- Zvw sin (v) - (2vwcos (v?)
- 2vw sin? (v?) -Zvw Cos? (v?)
- Zvw (sin? (ve) + cos (v*))
= - 2vw (1) =
-2vW
8. Use the transformations v = x + y and w = x - y to set up the transformed
integral S,(x2 – 2xy + y“)e** dA if R is the region bounded by x – y = 1, x –
y = 2, x = 0, and y = 0. You only need to set it up; you do not need to solve it
2 Ex
Transcribed Image Text:7. Find the Jacobian of the transformation T(x,y) = (w sin(v²),w cos(v²)). X= w sin (v?) Xw = sin (v?) Xv=W COS (v?). 2v y= w cos (v²) Ym= cos (v?) yu=-w sin (v")-2v J= (sin (v?)) (-wsin(u3).2v) - (wcos (v%.2v) (cos(v?) (Sin(v?))(2vw sin(v*)-(( 2vNcos (ve) Ccos (ve)) - Zvw sin (v) - (2vwcos (v?) - 2vw sin? (v?) -Zvw Cos? (v?) - Zvw (sin? (ve) + cos (v*)) = - 2vw (1) = -2vW 8. Use the transformations v = x + y and w = x - y to set up the transformed integral S,(x2 – 2xy + y“)e** dA if R is the region bounded by x – y = 1, x – y = 2, x = 0, and y = 0. You only need to set it up; you do not need to solve it 2 Ex
Expert Solution
steps

Step by step

Solved in 3 steps

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,