7. Find tan 0 + sin 0 for the angle shown. 3 tan 0 + sin 0

Calculus: Early Transcendentals
8th Edition
ISBN:9781285741550
Author:James Stewart
Publisher:James Stewart
Chapter1: Functions And Models
Section: Chapter Questions
Problem 1RCC: (a) What is a function? What are its domain and range? (b) What is the graph of a function? (c) How...
icon
Related questions
Question
The problem involves finding \( \tan \theta + \sin \theta \) for the angle \( \theta \) shown in a right triangle.

### Given:
- A right triangle with:
  - The opposite side to angle \( \theta \) labeled as \( 2 \).
  - The adjacent side to angle \( \theta \) labeled as \( 3 \).

### Required:
- Calculate:
  - \( \theta = \underline{\hspace{1cm}} \)
  - \( \tan \theta + \sin \theta = \underline{\hspace{1.5cm}} \)

### Diagram Description:
The right triangle has:
- A right angle.
- Angle \( \theta \) is opposite the side of length \( 2 \).
- The side adjacent to \( \theta \) is \( 3 \).
- The hypotenuse is not labeled, implies calculation should use these known sides.

### To Solve:
- Use the Pythagorean theorem to find the hypotenuse:
  \[
  \text{hypotenuse} = \sqrt{2^2 + 3^2} = \sqrt{4 + 9} = \sqrt{13}
  \]
- Calculate \( \tan \theta = \frac{\text{opposite}}{\text{adjacent}} = \frac{2}{3} \).
- Calculate \( \sin \theta = \frac{\text{opposite}}{\text{hypotenuse}} = \frac{2}{\sqrt{13}} \).

- Combine to find \( \tan \theta + \sin \theta \):
  \[
  \tan \theta + \sin \theta = \frac{2}{3} + \frac{2}{\sqrt{13}}
  \]
Transcribed Image Text:The problem involves finding \( \tan \theta + \sin \theta \) for the angle \( \theta \) shown in a right triangle. ### Given: - A right triangle with: - The opposite side to angle \( \theta \) labeled as \( 2 \). - The adjacent side to angle \( \theta \) labeled as \( 3 \). ### Required: - Calculate: - \( \theta = \underline{\hspace{1cm}} \) - \( \tan \theta + \sin \theta = \underline{\hspace{1.5cm}} \) ### Diagram Description: The right triangle has: - A right angle. - Angle \( \theta \) is opposite the side of length \( 2 \). - The side adjacent to \( \theta \) is \( 3 \). - The hypotenuse is not labeled, implies calculation should use these known sides. ### To Solve: - Use the Pythagorean theorem to find the hypotenuse: \[ \text{hypotenuse} = \sqrt{2^2 + 3^2} = \sqrt{4 + 9} = \sqrt{13} \] - Calculate \( \tan \theta = \frac{\text{opposite}}{\text{adjacent}} = \frac{2}{3} \). - Calculate \( \sin \theta = \frac{\text{opposite}}{\text{hypotenuse}} = \frac{2}{\sqrt{13}} \). - Combine to find \( \tan \theta + \sin \theta \): \[ \tan \theta + \sin \theta = \frac{2}{3} + \frac{2}{\sqrt{13}} \]
Expert Solution
Step 1

Calculus homework question answer, step 1, image 1

steps

Step by step

Solved in 2 steps with 1 images

Blurred answer
Recommended textbooks for you
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning
Thomas' Calculus (14th Edition)
Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON
Calculus: Early Transcendentals (3rd Edition)
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781319050740
Author:
Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:
W. H. Freeman
Precalculus
Precalculus
Calculus
ISBN:
9780135189405
Author:
Michael Sullivan
Publisher:
PEARSON
Calculus: Early Transcendental Functions
Calculus: Early Transcendental Functions
Calculus
ISBN:
9781337552516
Author:
Ron Larson, Bruce H. Edwards
Publisher:
Cengage Learning