7. Determine whether each of the following sets of vectors forms a basis for R³. If a set does not form a basis, add and/or remove vectors to the set so that the result is a basis for R³. For each set, add and remove the fewest number of vectors possible. (a) {(0, log(2), 0), (π, 0, 0), (0, 0, 1)} (b) {(1, 0, 0), (0, 2, 3)} (c) {(3, 4, 1), (2, 1, 1), (-4, -2,-2)} (d) {(1, 1, 1), (0, -2,-2), (0, 0, 8), (1, 2, 3)}

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
7. Determine whether each of the following sets of vectors forms a basis for R³. If a set does not form a
basis, add and/or remove vectors to the set so that the result is a basis for R³. For each set, add and
remove the fewest number of vectors possible.
(a) {(0, log(2), 0), (π, 0, 0), (0, 0, 1)}
(b) {(1,0,0), (0, 2, 3)}
(c) {(3, 4, 1), (2, 1, 1), (—4, —2, −2)}
(d) {(1, 1, 1), (0, -2,-2), (0, 0, 8), (1,2,3)}
Transcribed Image Text:7. Determine whether each of the following sets of vectors forms a basis for R³. If a set does not form a basis, add and/or remove vectors to the set so that the result is a basis for R³. For each set, add and remove the fewest number of vectors possible. (a) {(0, log(2), 0), (π, 0, 0), (0, 0, 1)} (b) {(1,0,0), (0, 2, 3)} (c) {(3, 4, 1), (2, 1, 1), (—4, —2, −2)} (d) {(1, 1, 1), (0, -2,-2), (0, 0, 8), (1,2,3)}
Expert Solution
Step 1

The given vectors are,

a) 0, log2, 0, π, 0, 0, 0, 0, 1

b) 1, 0, 0, 0, 2, 3

c) 3, 4, 1, 2, 1, 1, -4, -2, -2

d) 1, 1, 1, 0, -2, -2, 0, 0, 8, 1, 2, 3.

We have to find these vectors to form a basis of 3. If not, add or remove some vectors to make a basis.

trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 7 steps

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,