7. Convert the given function to a power series representation with a restricted domain and compute f(2). 20 f(x) = 4-x

Calculus: Early Transcendentals
8th Edition
ISBN:9781285741550
Author:James Stewart
Publisher:James Stewart
Chapter1: Functions And Models
Section: Chapter Questions
Problem 1RCC: (a) What is a function? What are its domain and range? (b) What is the graph of a function? (c) How...
Question
**Problem 7: Power Series Representation and Evaluation**

Convert the given function to a power series representation with a restricted domain and compute \( f(2) \).

\[ f(x) = \frac{20}{4 - x} \]

**Solution Strategy:**

1. **Identify the General Form:**
   Recognize that \(\frac{1}{1 - u}\) can be expanded into a power series \(\sum_{n=0}^{\infty} u^n\) for \(|u| < 1\).

2. **Transform the Function:**
   Rewrite \( f(x) = \frac{20}{4 - x} \) in a similar form to apply the geometric series.
   
   Let \( u = \frac{x}{4} \), then:
   
   \[ f(x) = \frac{20}{4 \left(1 - \frac{x}{4}\right)} = 5 \cdot \frac{1}{1 - \frac{x}{4}} \]

3. **Expand as Power Series:**
   Using the geometric series formula:
   
   \[ \frac{1}{1 - \frac{x}{4}} = \sum_{n=0}^{\infty} \left(\frac{x}{4}\right)^n \]
   
   Substitute back:
   
   \[ f(x) = 5 \sum_{n=0}^{\infty} \left(\frac{x}{4}\right)^n \]
   
   \[ = \sum_{n=0}^{\infty} \frac{5x^n}{4^n} \]

4. **Determine the Domain:**
   The series converges for \(|\frac{x}{4}| < 1\), hence \(|x| < 4\).

5. **Compute \( f(2) \):**
   Substitute \( x = 2 \):
   
   \[ f(2) = \sum_{n=0}^{\infty} \frac{5 \cdot 2^n}{4^n} \]
   
   Evaluate the series:
   
   \[ f(2) = \sum_{n=0}^{\infty} \left(\frac{5}{2}\right) \left(\frac{1}{2}\right)^n \]
   
   \[ = 5 \cdot \frac{1
Transcribed Image Text:**Problem 7: Power Series Representation and Evaluation** Convert the given function to a power series representation with a restricted domain and compute \( f(2) \). \[ f(x) = \frac{20}{4 - x} \] **Solution Strategy:** 1. **Identify the General Form:** Recognize that \(\frac{1}{1 - u}\) can be expanded into a power series \(\sum_{n=0}^{\infty} u^n\) for \(|u| < 1\). 2. **Transform the Function:** Rewrite \( f(x) = \frac{20}{4 - x} \) in a similar form to apply the geometric series. Let \( u = \frac{x}{4} \), then: \[ f(x) = \frac{20}{4 \left(1 - \frac{x}{4}\right)} = 5 \cdot \frac{1}{1 - \frac{x}{4}} \] 3. **Expand as Power Series:** Using the geometric series formula: \[ \frac{1}{1 - \frac{x}{4}} = \sum_{n=0}^{\infty} \left(\frac{x}{4}\right)^n \] Substitute back: \[ f(x) = 5 \sum_{n=0}^{\infty} \left(\frac{x}{4}\right)^n \] \[ = \sum_{n=0}^{\infty} \frac{5x^n}{4^n} \] 4. **Determine the Domain:** The series converges for \(|\frac{x}{4}| < 1\), hence \(|x| < 4\). 5. **Compute \( f(2) \):** Substitute \( x = 2 \): \[ f(2) = \sum_{n=0}^{\infty} \frac{5 \cdot 2^n}{4^n} \] Evaluate the series: \[ f(2) = \sum_{n=0}^{\infty} \left(\frac{5}{2}\right) \left(\frac{1}{2}\right)^n \] \[ = 5 \cdot \frac{1
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 3 steps with 3 images

Blurred answer
Similar questions
Recommended textbooks for you
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning
Thomas' Calculus (14th Edition)
Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON
Calculus: Early Transcendentals (3rd Edition)
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781319050740
Author:
Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:
W. H. Freeman
Precalculus
Precalculus
Calculus
ISBN:
9780135189405
Author:
Michael Sullivan
Publisher:
PEARSON
Calculus: Early Transcendental Functions
Calculus: Early Transcendental Functions
Calculus
ISBN:
9781337552516
Author:
Ron Larson, Bruce H. Edwards
Publisher:
Cengage Learning