7. Consider the vector space F³ = = {(x, y, z)|x, y, z ≤ F}, where F is field. (a). let ~ be a relation on F³ \ {0, 0, 0}, defined by α = : (x₁, Y₁, 2₁) ~ ß = (X2, Y2, 72) if there exists some > € K s.t. λa = B. Show that X is an equivalence relation. (b). Describe the equivalent classes [a] in F3. (c). The projective plane over F, denoted by FP2 is the set of equivalent classes [a]. We interpret the primitive term as • point: [a], a € F³. ● line: {[a]|α = (x, y, z), ax+by+cz = 0} for some fixed a, b, c = F.
7. Consider the vector space F³ = = {(x, y, z)|x, y, z ≤ F}, where F is field. (a). let ~ be a relation on F³ \ {0, 0, 0}, defined by α = : (x₁, Y₁, 2₁) ~ ß = (X2, Y2, 72) if there exists some > € K s.t. λa = B. Show that X is an equivalence relation. (b). Describe the equivalent classes [a] in F3. (c). The projective plane over F, denoted by FP2 is the set of equivalent classes [a]. We interpret the primitive term as • point: [a], a € F³. ● line: {[a]|α = (x, y, z), ax+by+cz = 0} for some fixed a, b, c = F.
Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Related questions
Question
[Classical Geometry] How do you solve #7? The second picture is a hint (you don't need to solve the bullet points in the hint, just the asked question in the list of seven)
![1. Construct √an – bn using the ruler and compass, where a > b> 0 in an ordered field F
(assuming you have two points (0, 0) and (1,0), as always.)
2. Show that Q√3 = {a +b√3|a, b € Q} is a field by verifying the field axioms one by one.
3. Show that if (F, P) is an ordered field and a € F is such that a > 0, so is a ¹.
4. Let II be an ordered field.
(a). Explain what does 3 mean in F.
(b). Give an example of ordered field F where 3 does not have a square root in F
(c). Show that there is an equilateral triangle in II if and only if √3 € F.
5. Show the congruence axiom C3 for IIF (don't assume the field is Pythagorean)
6. Can we discuss incidence in IIF31? Can we discuss betweenness in IIF3₁1? Explain your
answer.
7. Consider the vector space F³ = {(x, y, z)|x, y, z € F}, where F is field.
(a). let ~ be a relation on F³ \ {0, 0, 0}, defined by
a = (x1, y₁, 21) ~ B = (x2, Y2, 22)
if there exists some > € K s.t. Aa= B. Show that A is an equivalence relation.
(b). Describe the equivalent classes [a] in F3.
(c). The projective plane over F, denoted by FP2 is the set of equivalent classes [a]. We
interpret the primitive term as
• point: [a], a € F³.
● line: {[a] a = (x, y, z), ax + by + cz = 0} for some fixed a, b, c = F.
(d). show that the line is well defined: if ax+by+cz = 0 holds for some a = = (x, y, z),
then it holds for any B = (x1, 9₁, 2₁) s.t. B € [a].
(e). How many points are there in F₂P²? List them.
(f). How many lines are there in F₂P2? List them.
(g). Show that F₂P2 is isomorphic to the Fano plane.](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F73d0f296-b76f-4447-9ace-dbe53818487b%2F5633a4a2-719e-4958-ac4a-4a95ef5787fa%2F9ekr05q_processed.png&w=3840&q=75)
Transcribed Image Text:1. Construct √an – bn using the ruler and compass, where a > b> 0 in an ordered field F
(assuming you have two points (0, 0) and (1,0), as always.)
2. Show that Q√3 = {a +b√3|a, b € Q} is a field by verifying the field axioms one by one.
3. Show that if (F, P) is an ordered field and a € F is such that a > 0, so is a ¹.
4. Let II be an ordered field.
(a). Explain what does 3 mean in F.
(b). Give an example of ordered field F where 3 does not have a square root in F
(c). Show that there is an equilateral triangle in II if and only if √3 € F.
5. Show the congruence axiom C3 for IIF (don't assume the field is Pythagorean)
6. Can we discuss incidence in IIF31? Can we discuss betweenness in IIF3₁1? Explain your
answer.
7. Consider the vector space F³ = {(x, y, z)|x, y, z € F}, where F is field.
(a). let ~ be a relation on F³ \ {0, 0, 0}, defined by
a = (x1, y₁, 21) ~ B = (x2, Y2, 22)
if there exists some > € K s.t. Aa= B. Show that A is an equivalence relation.
(b). Describe the equivalent classes [a] in F3.
(c). The projective plane over F, denoted by FP2 is the set of equivalent classes [a]. We
interpret the primitive term as
• point: [a], a € F³.
● line: {[a] a = (x, y, z), ax + by + cz = 0} for some fixed a, b, c = F.
(d). show that the line is well defined: if ax+by+cz = 0 holds for some a = = (x, y, z),
then it holds for any B = (x1, 9₁, 2₁) s.t. B € [a].
(e). How many points are there in F₂P²? List them.
(f). How many lines are there in F₂P2? List them.
(g). Show that F₂P2 is isomorphic to the Fano plane.

Transcribed Image Text:Q7. First recall what is a equivalence relation.
Also note that the equivalence relation is put on the triple (x, y, z) = F³, not on F
e) f) are simple as long as you justified the equivalence relation well and checked that the line is indeed well-defined for the point in this plane(which is a collection of equivalence
classes)
g) can be justified by
• indicate rigorously what is a Fano plane. I hope you don't commit the mistake of the previous mistake again.
• Indicate rigorously what is F2P.
Now construct a map between them, and show that it is an isomorphism (recall what is an isomorphism between two models (of incidence geometry?))
Expert Solution

This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 4 steps with 4 images

Recommended textbooks for you

Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated

Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education

Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY

Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated

Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education

Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY

Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,

