Calculus: Early Transcendentals
8th Edition
ISBN:9781285741550
Author:James Stewart
Publisher:James Stewart
Chapter1: Functions And Models
Section: Chapter Questions
Problem 1RCC: (a) What is a function? What are its domain and range? (b) What is the graph of a function? (c) How...
Related questions
Question
![**Problem 7: Bacterial Growth Rate Calculation**
The doubling time for a certain bacteria population is 3 hours. What is the growth rate? Round to the nearest tenth of a percent.
**Explanation:**
To solve this problem, we need to determine the growth rate of a bacteria population given its doubling time. The growth rate can be calculated using the formula for exponential growth based on doubling time:
\[ \text{Growth rate (r)} = \left(\frac{\ln(2)}{\text{Doubling time (T)}}\right) \times 100 \]
Where \( \ln(2) \approx 0.693 \).
Let's calculate the growth rate step by step:
1. **Doubling Time (T)**: Given as 3 hours.
2. **Natural Logarithm of 2**: \( \ln(2) \approx 0.693 \).
**Calculation:**
\[ \text{Growth rate (r)} = \left(\frac{0.693}{3}\right) \times 100 \]
\[ \text{Growth rate (r)} \approx 0.231 \times 100 \]
\[ \text{Growth rate (r)} \approx 23.1\% \]
**Conclusion:**
The growth rate of the bacteria population is approximately 23.1% per hour.](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F042a0375-4506-4632-a5f0-d842c57b4108%2Fe5a05e12-8d17-4022-a0a3-025cad07926c%2F7c74w1n_processed.png&w=3840&q=75)
Transcribed Image Text:**Problem 7: Bacterial Growth Rate Calculation**
The doubling time for a certain bacteria population is 3 hours. What is the growth rate? Round to the nearest tenth of a percent.
**Explanation:**
To solve this problem, we need to determine the growth rate of a bacteria population given its doubling time. The growth rate can be calculated using the formula for exponential growth based on doubling time:
\[ \text{Growth rate (r)} = \left(\frac{\ln(2)}{\text{Doubling time (T)}}\right) \times 100 \]
Where \( \ln(2) \approx 0.693 \).
Let's calculate the growth rate step by step:
1. **Doubling Time (T)**: Given as 3 hours.
2. **Natural Logarithm of 2**: \( \ln(2) \approx 0.693 \).
**Calculation:**
\[ \text{Growth rate (r)} = \left(\frac{0.693}{3}\right) \times 100 \]
\[ \text{Growth rate (r)} \approx 0.231 \times 100 \]
\[ \text{Growth rate (r)} \approx 23.1\% \]
**Conclusion:**
The growth rate of the bacteria population is approximately 23.1% per hour.
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 2 steps with 1 images
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Recommended textbooks for you
![Calculus: Early Transcendentals](https://www.bartleby.com/isbn_cover_images/9781285741550/9781285741550_smallCoverImage.gif)
Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning
![Thomas' Calculus (14th Edition)](https://www.bartleby.com/isbn_cover_images/9780134438986/9780134438986_smallCoverImage.gif)
Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON
![Calculus: Early Transcendentals (3rd Edition)](https://www.bartleby.com/isbn_cover_images/9780134763644/9780134763644_smallCoverImage.gif)
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON
![Calculus: Early Transcendentals](https://www.bartleby.com/isbn_cover_images/9781285741550/9781285741550_smallCoverImage.gif)
Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning
![Thomas' Calculus (14th Edition)](https://www.bartleby.com/isbn_cover_images/9780134438986/9780134438986_smallCoverImage.gif)
Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON
![Calculus: Early Transcendentals (3rd Edition)](https://www.bartleby.com/isbn_cover_images/9780134763644/9780134763644_smallCoverImage.gif)
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON
![Calculus: Early Transcendentals](https://www.bartleby.com/isbn_cover_images/9781319050740/9781319050740_smallCoverImage.gif)
Calculus: Early Transcendentals
Calculus
ISBN:
9781319050740
Author:
Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:
W. H. Freeman
![Precalculus](https://www.bartleby.com/isbn_cover_images/9780135189405/9780135189405_smallCoverImage.gif)
![Calculus: Early Transcendental Functions](https://www.bartleby.com/isbn_cover_images/9781337552516/9781337552516_smallCoverImage.gif)
Calculus: Early Transcendental Functions
Calculus
ISBN:
9781337552516
Author:
Ron Larson, Bruce H. Edwards
Publisher:
Cengage Learning