- 7 Let v, = 1 6. V3 = -7 and u = 7 Determine if u is in Nul A, where A = V1 V2 V3 6 6 7 6 Is u in Nul A? Yes No

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
### Linear Algebra Problem: Null Space Determination

#### Problem Statement:
You are given the following vectors and matrix:

\[
\mathbf{v_1} = \begin{bmatrix}
1 \\
6 \\
-2 
\end{bmatrix}, \quad 
\mathbf{v_2} = \begin{bmatrix}
-2 \\
6 \\
6 
\end{bmatrix}, \quad 
\mathbf{v_3} = \begin{bmatrix}
-7 \\
7 \\
1 
\end{bmatrix}, \quad 
\mathbf{u} = \begin{bmatrix}
-7 \\
7 \\
6 
\end{bmatrix}
\]

Determine if vector **u** is in the null space (Nul) of matrix **A**, where:

\[
A = \begin{bmatrix}
\mathbf{v_1} & \mathbf{v_2} & \mathbf{v_3} 
\end{bmatrix}
\]

#### Question:
Is **u** in Nul **A**?

#### Options:
- ⬤ Yes
- ⬤ No


### Detailed Explanation:

1. **Matrix A Construction**:
   The matrix **A** is constructed by using the vectors \(\mathbf{v_1}\), \(\mathbf{v_2}\), and \(\mathbf{v_3}\) as its columns:

   \[
   A = \begin{bmatrix}
   1 & -2 & -7 \\
   6 & 6  & 7 \\
   -2 & 6  & 1 
   \end{bmatrix}
   \]

2. **Null Space**:
   The null space of a matrix **A** is the set of all vectors \(\mathbf{x}\) such that \(A\mathbf{x} = \mathbf{0}\). To determine if \(\mathbf{u}\) is in Nul **A**, we need to check if there exists a solution to the equation \(A\mathbf{c} = \mathbf{u}\), where \(\mathbf{u}\) is:

   \[
   \mathbf{u} = \begin{bmatrix}
   -7 \\
   7 \\
   6 
   \end{bmatrix}
   \]

3. **Verification Procedure**:
Transcribed Image Text:### Linear Algebra Problem: Null Space Determination #### Problem Statement: You are given the following vectors and matrix: \[ \mathbf{v_1} = \begin{bmatrix} 1 \\ 6 \\ -2 \end{bmatrix}, \quad \mathbf{v_2} = \begin{bmatrix} -2 \\ 6 \\ 6 \end{bmatrix}, \quad \mathbf{v_3} = \begin{bmatrix} -7 \\ 7 \\ 1 \end{bmatrix}, \quad \mathbf{u} = \begin{bmatrix} -7 \\ 7 \\ 6 \end{bmatrix} \] Determine if vector **u** is in the null space (Nul) of matrix **A**, where: \[ A = \begin{bmatrix} \mathbf{v_1} & \mathbf{v_2} & \mathbf{v_3} \end{bmatrix} \] #### Question: Is **u** in Nul **A**? #### Options: - ⬤ Yes - ⬤ No ### Detailed Explanation: 1. **Matrix A Construction**: The matrix **A** is constructed by using the vectors \(\mathbf{v_1}\), \(\mathbf{v_2}\), and \(\mathbf{v_3}\) as its columns: \[ A = \begin{bmatrix} 1 & -2 & -7 \\ 6 & 6 & 7 \\ -2 & 6 & 1 \end{bmatrix} \] 2. **Null Space**: The null space of a matrix **A** is the set of all vectors \(\mathbf{x}\) such that \(A\mathbf{x} = \mathbf{0}\). To determine if \(\mathbf{u}\) is in Nul **A**, we need to check if there exists a solution to the equation \(A\mathbf{c} = \mathbf{u}\), where \(\mathbf{u}\) is: \[ \mathbf{u} = \begin{bmatrix} -7 \\ 7 \\ 6 \end{bmatrix} \] 3. **Verification Procedure**:
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 3 steps with 3 images

Blurred answer
Knowledge Booster
Indefinite Integral
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, advanced-math and related others by exploring similar questions and additional content below.
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,