7 Given the inner product space (R³(R),+,·,· ), where xoy = 3x₁y₁ + 2(x₂Y₁ + X₁Y₂) + 3x₂Y/₂ + 2x3V3, X = (X₁, X₂, X3),Y = (₁,2,3) and the vectors u₁=(1,-2,1), u2=(-1,2,0), u3=(1,-1,1), u4=(0,1,1). Find the linear mapping ƒ:R³ →R³, such that ƒ (u₁)=(4,0,4), ƒ(u₂)=(-3,2,-3), f(u3)=(3,1,3), fƒ(u4)=(0,3,0).

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
7
Given the inner product space (R³(R),+,., °), where
xoy = 3x₁₁ + 2(x₂₁ + X₁/₂) + 3x₂3/₂ + 2x3V3, X = (X₁, X2, X3),Y = (V₁, V2,Y3)
and the vectors u₁=(1,-2,1), u₂=(-1,2,0), u3=(1,-1,1), u4=(0,1,1).
Find the linear mapping ƒ:R³ →R³, such that f(u₁)=(4,0,4), ƒ(u₂)=(-3,2,-3),
f(u3)=(3,1,3), f(u4)=(0,3,0).
Transcribed Image Text:7 Given the inner product space (R³(R),+,., °), where xoy = 3x₁₁ + 2(x₂₁ + X₁/₂) + 3x₂3/₂ + 2x3V3, X = (X₁, X2, X3),Y = (V₁, V2,Y3) and the vectors u₁=(1,-2,1), u₂=(-1,2,0), u3=(1,-1,1), u4=(0,1,1). Find the linear mapping ƒ:R³ →R³, such that f(u₁)=(4,0,4), ƒ(u₂)=(-3,2,-3), f(u3)=(3,1,3), f(u4)=(0,3,0).
Expert Solution
steps

Step by step

Solved in 3 steps with 2 images

Blurred answer
Similar questions
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,