7-18 Use (a) the Trapezoidal Rule, (b) the Midpoint Rule, and (c) Simpson's Rule to approximate the given integral with the specified value of n. 7. ₁ √₁ + x³ dx, n = 4 9. ₁ √ex - 1 dx, n = 10 100 10. ²/1-x² dx, n = 10 2 11. ₁ ex+cosx dx, n = 6 -1 13. √y cos y dy, n = 8 x² 15. So 1 + x² 17. fln(1 + e*) dx, n = 8 C1 dx, n = 10 8. sin √x dx, n = 6 12. fe¹/x dx, 14. n = 8 12 d dt, n = 10 1 In t t 16. ₁ sin dt, n = 4

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
7
## Approximating Integrals using Numerical Methods

### Instructions:
Use (a) the Trapezoidal Rule, (b) the Midpoint Rule, and (c) Simpson's Rule to approximate the given integral with the specified value of \( n \).

### Given Integrals:

7. \[
\int_{0}^{1} \sqrt{1 + x^3} \, dx, \quad n = 4
\]

8. \[
\int_{1}^{4} \sin \sqrt{x} \, dx, \quad n = 6
\]

9. \[
\int_{0}^{1} e^x - 1 \, dx, \quad n = 10
\]

10. \[
\int_{0}^{2} \sqrt[3]{1 - x^2} \, dx, \quad n = 10
\]

11. \[
\int_{-1}^{2} e^{x + \cos x} \, dx, \quad n = 6
\]

12. \[
\int_{1}^{3} e^{1/x} \, dx, \quad n = 8
\]

13. \[
\int_{0}^{2} \sqrt{y} \cos y \, dy, \quad n = 8
\]

14. \[
\int_{2}^{3} \frac{1}{\ln t} \, dt, \quad n = 10
\]

15. \[
\int_{0}^{1} \frac{x^2}{1 + x^4} \, dx, \quad n = 10
\]

16. \[
\int_{1}^{3} \frac{\sin t}{t} \, dt, \quad n = 4
\]

17. \[
\int_{0}^{1} \ln(1 + e^x) \, dx, \quad n = 8
\]

18. \[
\int_{0}^{1} \sqrt{1 + x^3} \, dx, \quad n = 10
\]
Transcribed Image Text:## Approximating Integrals using Numerical Methods ### Instructions: Use (a) the Trapezoidal Rule, (b) the Midpoint Rule, and (c) Simpson's Rule to approximate the given integral with the specified value of \( n \). ### Given Integrals: 7. \[ \int_{0}^{1} \sqrt{1 + x^3} \, dx, \quad n = 4 \] 8. \[ \int_{1}^{4} \sin \sqrt{x} \, dx, \quad n = 6 \] 9. \[ \int_{0}^{1} e^x - 1 \, dx, \quad n = 10 \] 10. \[ \int_{0}^{2} \sqrt[3]{1 - x^2} \, dx, \quad n = 10 \] 11. \[ \int_{-1}^{2} e^{x + \cos x} \, dx, \quad n = 6 \] 12. \[ \int_{1}^{3} e^{1/x} \, dx, \quad n = 8 \] 13. \[ \int_{0}^{2} \sqrt{y} \cos y \, dy, \quad n = 8 \] 14. \[ \int_{2}^{3} \frac{1}{\ln t} \, dt, \quad n = 10 \] 15. \[ \int_{0}^{1} \frac{x^2}{1 + x^4} \, dx, \quad n = 10 \] 16. \[ \int_{1}^{3} \frac{\sin t}{t} \, dt, \quad n = 4 \] 17. \[ \int_{0}^{1} \ln(1 + e^x) \, dx, \quad n = 8 \] 18. \[ \int_{0}^{1} \sqrt{1 + x^3} \, dx, \quad n = 10 \]
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 4 steps with 4 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,