7-14 Sketch the curve with the given vector equation. Indicate with an arrow the direction in which increases. 7. r(t) = (sin t, t) 9. r(t)= (1, 21, 2t) 11. r(t)=(3, 1,2 - 1²) 12. r(t) = 2 cos ti + 2 sin tj + k 13. r(t) = t²i + tªj + tºk 8. r(t) = (1²-1, t) 10. r(t) = (sin t, t, cos mt) Tor
7-14 Sketch the curve with the given vector equation. Indicate with an arrow the direction in which increases. 7. r(t) = (sin t, t) 9. r(t)= (1, 21, 2t) 11. r(t)=(3, 1,2 - 1²) 12. r(t) = 2 cos ti + 2 sin tj + k 13. r(t) = t²i + tªj + tºk 8. r(t) = (1²-1, t) 10. r(t) = (sin t, t, cos mt) Tor
Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Related questions
Question
13

Transcribed Image Text:I
V
854
5. lim
118
III
X-
6. lim te
1-8
X-
7-14 Sketch the curve with the given vector equation. Indicate
with an arrow the direction in which t increases.
7. r(t) = (sin t, t)
9. r(t) = (t, 2 t, 2t)
11. r(t) =(3, t, 2 - 1²)
12. r(t) = 2 cos ti + 2 sin tj + k
poo
13. r(t) = t²i + tªj + tºk
14. r(t) = cos ti-cos tj + sin t k
(1+, tar
17. P(2, 0, 0),
19. P(0, -1, 1),
CHAPTER 13 Vector Functions P.ET MOITD02
t
¹27³ -
t
(10%, 2
(27) +1,1 sin -—-)
15-16 Draw the projections of the curve on the three coordinate
planes. Use these projections to help sketch the curve.
15. r(t) = (t, sin t, 2 cos t)
16. r(t) = (t, t, t²)
X
17-20 Find a vector equation and parametric equations for the
line segment that joins P to Q.
ZA
1- e
tan ¹t,
t
21-26 Match the parametric equations with the graphs
(labeled I-VI). Give reasons for your choices.
II
ZA
ZA
-21
Q(6, 2, -2)
(12, 13, 14)
8. r(t) = (t²-1, t)
10. r(t) = (sin πt, t, cos mt)
in
18. P(-1, 2, -2), Q(-3, 5, 1)
20. P(a, b, c), Q(u, v, w)
foogle+
XK
notamine ben bavlo TERSE
VINIVASA
VI
ZA
X
svo songe gnieoroim
ni svino sobre to
SOB to signe
le boireito (anoge
ZA
y
9
∙y
Sunwollt
ZA mil sdb ball 9-
21. x = t cos t,
22. x = cos t,
23. x = 1, y = 1/(1+1²), z = 1²
24. x = cos t,
y=t, z=tsint, t≥0
y = sint, z = 1/(1 + f²)
25. x = cos 8t, y = sin 8t, z =
26. x = cos²t, y = sin²t, z = t
27. Show that the curve with parametric equations x = t cost,
y = t sin t, z = t lies on the cone z² = x² + y², and use this
fact to help sketch the curve.
y = sin t, z = cos 2t
0.81
e0.8r, t≥ 0
y = cos t, z
28. Show that the curve with parametric equations x = sint,
sin²t is the curve of intersection of the surfaces
2
2
x² and x² + y²
= 1. Use this fact to help sketch the curve.
Z
=
=
29. Find three different surfaces that contain the curve
r(t) = 2ti + e'j + e²¹ k.
ROLLY SYS
30. Find three different surfaces that contain the curve
r(t) = t²i+ In tj+ (1/t) k.
21.0
31. At what points does the curve r(t) = ti+ (2t - t²) k inter-
sect the paraboloid z = x² + y²?
32. At what points does the helix r(t) = (sin t, cos t, t) intersect
the sphere x² + y² + z²:
=
5?
33-37 Use a computer to graph the curve with the given vector
equation. Make sure you choose a parameter domain and view-
points that reveal the true nature of the curve.
33. r(t) = (cos t sin 2t, sin t sin 2t, cos 2t)
34. r(t) = (te', e¯', t)
35. r(t) = (sin 3t cos t, t, sin 3t sin
sin t)
36. r(t) = (cos(8 cos t) sin t, sin(8 cos t) sin t, cos t)
37. r(t) = (cos 2t, cos 3t, cos 4t)
38. Graph the curve with parametric equations x = sin t,
y = sin 2t, z = cos 4t. Explain its shape by graphing its
projections onto the three coordinate planes.
39. Graph the curve with parametric equations
x = (1 + cos 16t) cos t
y = (1 + cos 16t) sin t
z = 1 + cos 16t 21DA3X3 1.81
Explain the appearance of the graph by showing that it lies on
a cone.
to ob Sot
40. Graph the curve with parametric equations
x = √1 -0.25 cos² 10t cos t
y=√1-0.25 cos² 10t sin t
z = 0.5 cos 10t
23-11-5
Expert Solution

This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 2 steps with 1 images

Recommended textbooks for you

Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated

Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education

Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY

Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated

Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education

Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY

Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,

