656 nm emitted by electrons dropping from the n = 3 to the n = 2 orbital in hydrogen. The hydrogen is in an interstellar cloud at 5000k. If the cloud were heted to 10000 K, what would be the wavelength of the photons emitted by the transition? a) 328 nm b) 656 nm c) 1312 nm d) 658 nm e) 654 nm
Stellar evolution
We may see thousands of stars in the dark sky. Our universe consists of billions of stars. Stars may appear tiny to us but they are huge balls of gasses. Sun is a star of average size. Some stars are even a thousand times larger than the sun. The stars do not exist forever they have a certain lifetime. The life span of the sun is about 10 billion years. The star undergoes various changes during its lifetime, this process is called stellar evolution. The structure of the sun-like star is shown below.
Red Shift
It is an astronomical phenomenon. In this phenomenon, increase in wavelength with corresponding decrease in photon energy and frequency of radiation of light. It is the displacement of spectrum of any kind of astronomical object to the longer wavelengths (red) side.
Suppose we detect red photons at 656 nm emitted by electrons dropping from the n = 3 to the n = 2 orbital in hydrogen. The hydrogen is in an interstellar cloud at 5000k. If the cloud were heted to 10000 K, what would be the wavelength of the photons emitted by the transition?
a) 328 nm
b) 656 nm
c) 1312 nm
d) 658 nm
e) 654 nm
Trending now
This is a popular solution!
Step by step
Solved in 2 steps with 1 images