65. 66. 67. 68. X f(x) X -2 0 || f(x) X -2012 224 x -1 0 1 2 f(x) 1 223 off f(x) -1 -1 0 2 2 24 1 0 1 3 223

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
Please do parts 65-68 please… Use the photo from problem 6 for reference for the work to find the answer to those parts
**Problem IV**: Find a linear polynomial \( f(x) \) which is the best least squares fit to the following data.

|   | \( x \) | \(-1\) | 0 | 1 | 2 |   |
|---|----------------|---|---|---|---|---|
| 61. | \( f(x) \) | 0 | 2 | 2 | 4 |
| 62. | \( f(x) \) | 0 | 2 | 2 | 4 |
| 63. | \( f(x) \) | 0 | 2 | 2 | 4 |
| 64. | \( f(x) \) | 0 | 2 | 2 | 4 |
| 65. | \( f(x) \) | 0 | 2 | 2 | 4 |
| 66. | \( f(x) \) | 0 | 2 | 2 | 4 |
| 67. | \( f(x) \) | 1 | 2 | 2 | 3 |
| 68. | \( f(x) \) | 1 | 2 | 2 | 3 |
| 69. | \( f(x) \) | 1 | 2 | 2 | 3 |
| 70. | \( f(x) \) | 1 | 2 | 2 | 3 |

|   | \( x \) | \(-1\) | 0 | 1 | 2 |   |
|---|----------------|---|---|---|---|---|
| 71. | \( f(x) \) | 4 | 2 | 2 | 0 |
| 72. | \( f(x) \) | 4 | 2 | 2 | 0 |
| 73. | \( f(x) \) | 4 | 2 | 2 | 0 |
| 74. | \( f(x) \) | 4 | 2 | 2 | 0 |
| 75. | \( f(x) \) | 4 | 2 | 2 | 0 |
| 76. | \( f(x) \) | 4 | 2 | 2 | 0 |
| 77. | \( f(x)
Transcribed Image Text:**Problem IV**: Find a linear polynomial \( f(x) \) which is the best least squares fit to the following data. | | \( x \) | \(-1\) | 0 | 1 | 2 | | |---|----------------|---|---|---|---|---| | 61. | \( f(x) \) | 0 | 2 | 2 | 4 | | 62. | \( f(x) \) | 0 | 2 | 2 | 4 | | 63. | \( f(x) \) | 0 | 2 | 2 | 4 | | 64. | \( f(x) \) | 0 | 2 | 2 | 4 | | 65. | \( f(x) \) | 0 | 2 | 2 | 4 | | 66. | \( f(x) \) | 0 | 2 | 2 | 4 | | 67. | \( f(x) \) | 1 | 2 | 2 | 3 | | 68. | \( f(x) \) | 1 | 2 | 2 | 3 | | 69. | \( f(x) \) | 1 | 2 | 2 | 3 | | 70. | \( f(x) \) | 1 | 2 | 2 | 3 | | | \( x \) | \(-1\) | 0 | 1 | 2 | | |---|----------------|---|---|---|---|---| | 71. | \( f(x) \) | 4 | 2 | 2 | 0 | | 72. | \( f(x) \) | 4 | 2 | 2 | 0 | | 73. | \( f(x) \) | 4 | 2 | 2 | 0 | | 74. | \( f(x) \) | 4 | 2 | 2 | 0 | | 75. | \( f(x) \) | 4 | 2 | 2 | 0 | | 76. | \( f(x) \) | 4 | 2 | 2 | 0 | | 77. | \( f(x)
**Problem 6.** Find a linear polynomial which is the best least squares fit to the following data:

\[
\begin{array}{c|cccc}
x & -2 & -1 & 0 & 1 & 2 \\
\hline
f(x) & -3 & -2 & 1 & 2 & 5 \\
\end{array}
\]

We are looking for a function \( f(x) = c_1 + c_2 x \), where \( c_1, c_2 \) are unknown coefficients. The data of the problem give rise to an overdetermined system of linear equations in variables \( c_1 \) and \( c_2 \):

\[
\begin{cases}
c_1 - 2c_2 = -3, \\
c_1 - c_2 = -2, \\
c_1 = 1, \\
c_1 + c_2 = 2, \\
c_1 + 2c_2 = 5.
\end{cases}
\]

This system is inconsistent.

We can represent the system as a matrix equation \( Ac = y \), where

\[
A = \begin{pmatrix}
1 & -2 \\
1 & -1 \\
1 & 0 \\
1 & 1 \\
1 & 2 \\
\end{pmatrix}, \quad
c = \begin{pmatrix}
c_1 \\
c_2 \\
\end{pmatrix}, \quad
y = \begin{pmatrix}
-3 \\
-2 \\
1 \\
2 \\
5 \\
\end{pmatrix}.
\]

The least squares solution \( c \) of the above system is a solution of the normal system \( A^T Ac = A^Ty \):

\[
\begin{pmatrix}
1 & 1 & 1 & 1 & 1 \\
-2 & -1 & 0 & 1 & 2 \\
\end{pmatrix}
\begin{pmatrix}
1 & -2 \\
1 & -1 \\
1 & 0 \\
1 & 1 \\
1 & 2 \\
\end{pmatrix}
\begin{pmatrix}
c_1 \\
c_2 \\
\end{pmatrix}
=
\begin{
Transcribed Image Text:**Problem 6.** Find a linear polynomial which is the best least squares fit to the following data: \[ \begin{array}{c|cccc} x & -2 & -1 & 0 & 1 & 2 \\ \hline f(x) & -3 & -2 & 1 & 2 & 5 \\ \end{array} \] We are looking for a function \( f(x) = c_1 + c_2 x \), where \( c_1, c_2 \) are unknown coefficients. The data of the problem give rise to an overdetermined system of linear equations in variables \( c_1 \) and \( c_2 \): \[ \begin{cases} c_1 - 2c_2 = -3, \\ c_1 - c_2 = -2, \\ c_1 = 1, \\ c_1 + c_2 = 2, \\ c_1 + 2c_2 = 5. \end{cases} \] This system is inconsistent. We can represent the system as a matrix equation \( Ac = y \), where \[ A = \begin{pmatrix} 1 & -2 \\ 1 & -1 \\ 1 & 0 \\ 1 & 1 \\ 1 & 2 \\ \end{pmatrix}, \quad c = \begin{pmatrix} c_1 \\ c_2 \\ \end{pmatrix}, \quad y = \begin{pmatrix} -3 \\ -2 \\ 1 \\ 2 \\ 5 \\ \end{pmatrix}. \] The least squares solution \( c \) of the above system is a solution of the normal system \( A^T Ac = A^Ty \): \[ \begin{pmatrix} 1 & 1 & 1 & 1 & 1 \\ -2 & -1 & 0 & 1 & 2 \\ \end{pmatrix} \begin{pmatrix} 1 & -2 \\ 1 & -1 \\ 1 & 0 \\ 1 & 1 \\ 1 & 2 \\ \end{pmatrix} \begin{pmatrix} c_1 \\ c_2 \\ \end{pmatrix} = \begin{
Expert Solution
steps

Step by step

Solved in 5 steps

Blurred answer
Similar questions
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,